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Unsupervised domain adaptation (UDA)

Clock ?

Goal: high accuracy on target domain (without labels)

Labeled source domain Unlabeled target domain
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Classical approach for UDA
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8

Motivated by theories such as 𝐻Δ𝐻 divergence (Ben-David et al 2010): 

want source and target reps to be “indistinguishable” to get good target 

accuracy

Classical approach for UDA
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Motivated by theories such as 𝐻Δ𝐻 divergence (Ben-David et al 2010): 

want source and target reps to be “indistinguishable” to get good target 

accuracy

Classical approach for UDA

DANN (Ganin et al. 2016)UDA-SS (Sun et al. 2019)
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)

Step 2: fine-tune on labeled data (source)

Step 3: evaluate accuracy (target)

Inspired by e.g., Blitzer et al 2007
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methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA 

methods (even when all methods use the same augmentations)

SwAV + Extra: unlabeled 
pre-training data = all 4 
domains (DomainNet) or 
all of ImageNet (Living-17, 
Entity-30)

Conventional hypothesis: does contrastive pre-training automatically 

merge the features across domains to achieve low HΔH-divergence?
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Contrastive pre-training doesn’t bring domains together
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Inspect DANN vs contrastive learning features: train discriminator between domains or 
between classes
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Contrastive pre-training doesn’t bring domains together

Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch)

Between domains
DANN: 14% err

Contrastive: 8% err

Between classes
DANN: 6% err

Contrastive: 7% err

Inspect DANN vs contrastive learning features: train discriminator between domains or 
between classes

Pre-training does not produce domain invariant features,

and domains are about as “far apart” as classes!
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• Performs competitively with strong baselines: SENTRY (Prabhu et al. 

2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)
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• Performs competitively with strong baselines: SENTRY (Prabhu et al. 

2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

• Instead of collapsing domains together, learns features that vary 

substantially across domains

Contrastive pre-training for UDA

Why do these features still generalize to the target

without domain invariance?



• Setup: augmentation graph

• Intuitions and theoretical results
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• Results for stochastic block model & beyond

• Contrastive pre-training vs. ERM & DANN

• Test theoretical predictions on real data
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• Contrastive learning hinges on positive pairs (augmentations of the same 

original input)

Setup: augmentation graph



27

• Contrastive learning hinges on positive pairs (augmentations of the same 

original input)

• Contrastive objective:

• map positive pairs to similar features

Setup: augmentation graph



28

• Contrastive learning hinges on positive pairs (augmentations of the same 

original input)

• Contrastive objective:

• map positive pairs to similar features

• map augmentations of different inputs to different features

Setup: augmentation graph
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
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(Butterfly)
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
𝜶

𝜶

Class 1
(Butterfly)

Class 2
(Clock)

𝛼: probability that 
augmentations of 
images coincide
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Setup: augmentation graph
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Setup: augmentation graph
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Setup: augmentation graph
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Setup: augmentation graph

𝝆

𝝆

𝝆

𝝆

Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)

𝜶

𝜸

𝜶

Magnitudes of connectivity parameters 𝜌, 𝛼, 𝛽, and 𝛾 ≈ similarity of augmentations

𝜷 𝜷
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Setup: augmentation graph

Can express augmentation graph using adjacency matrix 𝐴
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Sketch 
clock

Sketch 
butterfly

Real 
clock

Real 
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Sketch 
clock

𝜌 𝛽 𝛼 𝛾
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butterfly

𝛽 𝜌 𝛾 𝛼

Real    
clock

𝛼 𝛾 𝜌 𝛽

Real 
butterfly

𝛾 𝛼 𝛽 𝜌

Setup: augmentation graph

Can express augmentation graph using adjacency matrix 𝐴
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Intuitions & toy example

• Binary classification, 1 example per class and domain (4 examples total)

• Let 𝐹: 𝑅4×3 be a matrix whose rows contain learned features
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Intuitions & toy example

• Binary classification, 1 example per class and domain (4 examples total)

• Let 𝐹: 𝑅4×3 be a matrix whose rows contain learned features

𝐹 =

𝑓 (sketch clock)

𝑓 (sketch butterfly)

𝑓 (real clock)

𝑓 (real butterfly)
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Intuitions & toy example

Augmentation graph
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Augmentation graph



42

Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Augmentation graph Learned representation space
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Key condition for transfer: augmentations are more likely to change only 

domain (𝛼) or only class (𝛽) than both domain and class (𝛾)
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Intuitions & toy example

If instead 𝛼 < 𝛾:

Swapped
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Intuitions & toy example

If instead 𝛼 < 𝛾:

Swapped

If the condition is violated, the target features can be “swapped” so that a 

source-trained linear classifier fails to generalize
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Generalization beyond simple example

• Consider stochastic block model (SBM): extends to multiple domains, 

multiple classes, and multiple examples per class/domain
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contrastive pre-training to learn linearly transferable features (with easily 

separable source and target features)
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Generalization beyond simple example

• Consider stochastic block model (SBM): extends to multiple domains, 

multiple classes, and multiple examples per class/domain

• We prove: same conditions (min 𝛼, 𝛽 > 𝛾 and 𝜌 is largest) allow 

contrastive pre-training to learn linearly transferable features (with easily 

separable source and target features)

• Follow-up work generalizes beyond random graph models, with 

asymmetry: HaoChen et al. 2022
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• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 

requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

Connectivity predicts target accuracy
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• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 

requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

• Estimate 𝛼, 𝛽, 𝛾 by training a classifier to predict between augmented 

images of different domains/classes, evaluate on held out examples

• Estimate 𝑤1, 𝑤2 by fitting a linear function in log space and determine 

quality of fit compared to a control

Connectivity predicts target accuracy
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Predicting target accuracy (contrastive methods)
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Predicting target accuracy (controls)
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Predicting target accuracy (controls)

Lower quality of fit for non-contrastive 
methods: DANN and SENTRY
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• We train a linear probe for class and domain information in the 

contrastive features, finding that class and domain classifiers have low 

cosine similarity

Class and domain are disentangled
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• We train a linear probe for class and domain information in the 
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• We train a linear probe for class and domain information in the 

contrastive features, finding that class and domain classifiers have low 

cosine similarity

Class and domain are disentangled

𝑓dom
𝑓tgt

Orthogonal



64

• Access to target unlabeled examples is important for robustness 

(pretraining on source examples alone does not lead to robustness 

gains)
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• Rich organization can pretrain once, everyone can fine-tune for many 

tasks cheaply

• This approach gets SoTA on many robustness datasets: WILDS-FMoW, 

WILDS-iWildCam, ImageNet robustness, DomainNet

• Our paper: why does pretraining help? Is it just about having lots of 

data?

Concluding Thoughts: Why Pretraining?
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• Contrastive pre-training is a competitive method for UDA

• Works without collapsing source and target representations

• Instead, disentangles class and domain information, enabling transfer

• Consequence of the structure of connections between domains and classes 

via data augmentations

Conclusion
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Subgroup Robustness

Subgroup Robustness refers to the ability of a model 
to achieve good performance across discrete subgroups 
in a distribution.

This is an extreme version of subpopulation shift 
where we evaluate shift on target datasets entirely of a 
single (demographic) subpopulation.



With Great Progress Comes Great…Confusion?

Rapid Progress In Robust Learning

● Maximum Weighted Loss Discrepancy 
(Khani et al. 2019)

● DRO (e.g. Duchi and Namkoong 2018, 
Levy et al. 2020)

● Group DRO (Sagawa et al. 2020)
● DORO (Zhai et al. 2021)
● …many more!
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With Great Progress Comes Great…Confusion?

Rapid Progress In Robust Learning

● Maximum Weighted Loss Discrepancy 
(Khani et al. 2019)

● DRO (e.g. Duchi and Namkoong 2018, 
Levy et al. 2020)

● Group DRO (Sagawa et al. 2020)
● DORO (Zhai et al. 2021)
● …many more!

Need for Reliable Evaluation

In other fields, large-scale empirical 
baseline evaluations have been critical to 
(re)assessing progress (Liao et al. 2021).

The use of unreliable statistical inference 
methods in particular has led to 
misleading signals of progress (Agarwal et 
al. 2021).

What is the current SOTA for subgroup 
robustness in tabular data?
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Subgroup Robustness and Fairness

Subgroup Robustness



Subgroup Robustness and Fairness
Subgroup Fairness

Subgroup Robustness



Tabular Data: Deep Learning’s “Unconquered Castle”

Widely used in practice but often a secondary 
focus in evaluating robust models

Often directly encodes sensitive subgroups of 
interest

Challenging to model and SOTA performance 
is achieved with non-neural methods

[Sagawa et al. 2019]

[Koh et al. 2020]



[Borisov et al. 2022]

Current tabular SOTA

Model/baseline for most 
robustness experiments



Robustness Methods Fairness Methods Tabular Tree-Based Supervised Baselines

DORO (Chi^2, CVar)
DRO (Chi^2, CVar)
MWLD
Group DRO

LFR
Inprocessing (ExpGrad)
Postprocessing

XGBoost 
LightGBM
GBM
Random Forest

L2 Log. Reg.
SVM
MLP

X

X

Models

Hyperparameter/Architecture Grid Search

Datasets (incl. 2 sensitive attributes)

→ 317k total training iterations



Datasets

Dataset Label Sens. n d Smallest Test 
Subgroup

ACS Income* High/Low Income Race, Sex 499,350 20 18,134

ACS PubCov* Public Ins. Race, Sex 379,430 19 14,689

BRFSS* Diabetes Race, Sex 175,745 28 1,133

LARC At-Risk (Grade) URM Status, Sex 169,032 26 8,377

Adult High/Low Income Race, Sex 48,845 14 518

COMPAS Recidivism Race, Sex 7,215 10 57

Comm. & Crime Elevated Crime Income Lvl, Race 1,994 113 36

German Credit Credit Risk Age, Sex 1,000 22 11



Datasets

Dataset Label Sens. n d Smallest Test 
Subgroup

ACS Income* High/Low Income Race, Sex 499,350 20 18,134

ACS PubCov* Public Ins. Race, Sex 379,430 19 14,689

BRFSS* Diabetes Race, Sex 175,745 28 1,133

LARC At-Risk (Grade) URM Status, Sex 169,032 26 8,377

Adult High/Low Income Race, Sex 48,845 14 518

COMPAS Recidivism Race, Sex 7,215 10 57

Comm. & Crime Elevated Crime Income Lvl, Race 1,994 113 36

German Credit Credit Risk Age, Sex 1,000 22 11



Outline

Introduction

Two Perspectives on Subgroup Robustness

Study Design + Datasets

Results

Accuracy-Robustness Frontiers

Evaluating Evaluation Metrics + Model Selection Effects

Hyperparameter Sensitivity

Conclusions

Implications for Practice + Future Work



Example: Experiment Results (Group DRO, BRFSS)

W
or

st
-G

ro
up

 A
cc

ur
ac

y

each point = 1 
hyperparameter 
configuration 
(1,620 total 
shown)



Example: Experiment Results (Group DRO, BRFSS)

Trace Convex 
Hull

W
or

st
-G

ro
up

 A
cc

ur
ac

y

W
or

st
-G

ro
up

 A
cc

ur
ac

y

each point = 1 
hyperparameter 
configuration 
(1,620 total 
shown)



Tree Models Match Robustness Methods

W
or

st
-G

ro
up

 A
cc

: h
ig

he
r i

s 
be

tte
r

Accuracy: higher is better



Tree Models Match Robustness Methods

W
or

st
-G

ro
up

 A
cc

: h
ig

he
r i

s 
be

tte
r

Accuracy: higher is better



Metrics: Does what we measure matter?
Subgroup Fairness

Subgroup Robustness

Fairness metrics: 
Demographic Parity, 
Equalized Odds

Robust risk metrics: 
CVaR, DORO CVaR

Accuracy Metrics: 
Overall & Worst-Group Accuracy



Model Performance Metrics: One Size Does Not Fit All
ACS Income Dataset

Accuracy Robust Risk Fairness



Model Performance Metrics: One Size Does Not Fit All
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Accuracy Robust Risk Fairness
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Takeaways

Tree-based models (XGBoost, LightGBM, etc.) are surprisingly strong subgroup robustness baselines.

These models are cheaper to train, less sensitive to hyperparameters, and less sensitive to the 
model selection metric.



Future Directions

This finding is specific to MLP-based models, which are the exclusive (tabular) 
model evaluated in the robustness works we sought to benchmark.

→ Does shifting away from MLPs close the gap with trees?

This may be an artifact of well-known relationship between in-distribution and 
out-of-distribution accuracy (Miller et al. 2021).

→ How can we make neural architectures more tree-like (or adopt 
differentiable techniques for tree training to use robust learning) to take 
advantage of this near-linear empirical relationship?
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Robust Statistics

Goal: Signal recovery in the presence of arbitrary, adversarial 
corruptions.

2

An estimator is robust, if it is able to estimate the signal, even in 
the presence of these corruptions.

Adversary



Robust Statistics

Given: Samples from a distribution that is adversarially shifted in 
TV.  

Recover:  Signal when you know some properties of the inlier 
distribution

3
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Fraction of Corruptions ( ): As large as possible.ϵ

Sample complexity: As small as possible for the given . ϵ

Runtime: As small as possible, as a function of the input size. 
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Classical Robust Statistics
 [Tukey’60, Huber’64]. 
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Fraction of Corruptions ( ) 

Sample complexity 

Runtime 

ϵ

Algorithmic Robust Statistics
[Diakonikolas-Kane-Kamath-Li-Moitra-
Stewart’16, Lai-Rao-Vempala’16]
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Mean Estimation

7

Given:   samples drawn from  on  with mean . 

Recover:  such that  is small. 

poly(d) ! ℝd μ
̂μ ∥ ̂μ − μ∥2

Need  to be structured for the robust setting - typically Gaussian, Log-concave etc.!



Sparse Mean Estimation

Given:  samples, drawn from  with mean , 
where  is -sparse. 

Recover:  such that   is small. 

poly(k, log(d)) ! μ
μ k

̂μ ∥ ̂μ − μ∥2
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Outlier Model

A sample set is -corrupted, if an adversary has been allowed to 
inspect and arbitrarily corrupt an  fraction of the sample set.

ϵ
ϵ
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Outlier Model

A sample set is -corrupted, if an adversary has been allowed to 
inspect and arbitrarily corrupt an  fraction of the sample set.

ϵ
ϵ
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Adversary



Robust Sparse Mean Estimation

Given: -corrupted  size sample set, inliers drawn 

from  on  with a -sparse mean . 

Recover:  such that  is small. 

ϵ poly(k, log(d))
! ℝd k μ

̂μ ∥ ̂μ − μ∥2
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Sample complexity
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Find an algorithm achieving 
fastest rate of convergence.



Goal: Non-robust vs robust

11

Non-robust Setting

Sample complexity

∥
̂ μ−

μ∥

Find an algorithm achieving 
fastest rate of convergence.

Robust Setting

Sample complexity

∥
̂ μ−

μ∥

f (ϵ)

Find algorithm achieving 
slowest growing f .
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High-dimensional Sparse Mean Estimation: 

• [Balakrishnan-Du-Li-Singh’17]: Solves the problem for . Requires ellipsoid method + 
SDP.  

&(μ, Id)

• [Diakonikolas-K-Kane-Price-Stewart’19, Cheng-Diakonikolas-Kane-Ge-Gupta-Soltanokotabi’21]: 
More practical algorithms for .&(μ, Id)

12

Question: Is there an algorithm in the sparse setting which can achieve near-
optimal guarantees with bounded, unknown covariance?
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• Runs in time . poly(nd)

•  Recovers  satisfying,  w.h.p.̂μ ∥ ̂μ − μ∥2 ≤ Õ(ϵ) ∥Σ∥op
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We give nearly matching Statistical Query lower bound suggesting that  
samples are necessary.

)(*+)
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• Returns   satisfying  w.h.p. ̂μ ∥ ̂μ − μ∥2 ≤ O(ϵ1−1/t)

15

We give nearly matching Statistical Query lower bound suggesting that this is 
the optimal guarantee possible. 

Setting:  
1. The inlier distribution has its first  moments “certifiably” bounded by .*  
2. The covariance is unknown to the statistician. 

& O(1)

*We also need the first  moments bounded by . t log(d ) O(1)
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Questions?

Sushrut Karmalkar                                                           email: skarmalkar@wisc.edu



Thank You
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