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Unsupervised domain adaptation (UDA)
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Unsupervised domain adaptation (UDA)

Labeled source domain  Unlabeled target domain

Goal: high accuracy on target domain (without labels)
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Classical approach for UDA

Motivated by theories such as HAH divergence (Ben-David et al 2010):
want source and target reps to be “indistinguishable” to get good target

accuracy



Classical approach for UDA

Motivated by theories such as HAH divergence (Ben-David et al 2010):
want source and target reps to be “indistinguishable” to get good target

accuracy
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(a) Non-adapted (b) Ad apted

(a) Source classifier only (b) adding a self-supervised task (c) adding more tasks

UDA-SS (Sun et al. 2019) DANN (Ganin et al. 2016)



Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)

Step 3: evaluate accuracy (target)

Inspired by e.g., Blitzer et al 2007
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Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)

E’”l ‘ ERM
Conventional hypothesis: does contrastive pre-training automatically

merge the features across domains to achieve low HAH-divergence?
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes

Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes

Domain 1 (Sketch) Domain 2 (Real)

Class 1

(Butterfly)
Between classes
_ DANN: 6% err
Between domains Contrastive: 7% err
Class 2 DANN: 14% err
(Clock) Contrastive: 8% err

>

Pre-training does not produce domain invariant features,

and domains are about as “far apart” as classes!
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Contrastive pre-training for UDA

* Performs competitively with strong baselines: SENTRY (Prabhu et al.
2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

* Instead of collapsing domains together, learns features that vary

substantially across domains

Why do these features still generalize to the target

without domain invariance?



Outline

* Setup: augmentation graph
* Intuitions and theoretical results
* Main intuitions (toy example)
* Results for stochastic block model & beyond

* Contrastive pre-training vs. ERM & DANN

» Test theoretical predictions on real data
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Setup: augmentation graph

* Contrastive learning hinges on positive pairs (augmentations of the same
original input)
e Contrastive objective:

* map positive pairs to similar features

* map augmentations of different inputs to different features



Setup: augmentation graph

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch)

Domain 2 (Real)
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
-l a: probability that
Class 1 augmentations of
(Butterfly) images coincide
Class 2
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
Class 1
(Butterfly)
Class2 p
(Clock)

Magnitudes of connectivity parameters p, a, 5, and y = similarity of augmentations
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Setup: augmentation graph

Class 1
(Butterfly)

TN iR ?
Class 2 p < 5 :3 \
(Clock) Nizle.®

Can express augmentation graph using adjacency matrix A
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real) Sketch Sketch Real Real

- a clock  butterfly clock  butterfly
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Can express augmentation graph using adjacency matrix A
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* Intuitions and theoretical results
* Main intuitions (toy example)
* Results for stochastic block model & beyond

* Contrastive pre-training vs. ERM & DANN



Intuitions & toy example

* Binary classification, 1 example per class and domain (4 examples total)

e Let F': R*¥*3 be a matrix whose rows contain learned features

Domain 1 (Sketch) Domain 2 (Real)
| A a | 2
Cass1 p ( I Q
(Butterfly) N
Class2 p '

(Clock)
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Intuitions & toy example

* Binary classification, 1 example per class and domain (4 examples total)

e Let F': R*¥*3 be a matrix whose rows contain learned features

Class1 g (
(Butterfly)

Class2 p (

(Clock)

Domain 1

‘ ety s
R )

(Sketch) Domain 2 (Real)

# |

D E— f (real clock)

«—  f (sketch clock) —

«—— f (sketch butterfly) —

—

«<—  f (real butterfly) —
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Class 1
(Butterfly)

Class 2 p

(Clock)

Intuitions & toy example

Augmentation graph
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Class 1
(Butterfly)

Class 2 p

(Clock)

Intuitions & toy example

Augmentation graph

If min(a, ) > y (and self-loop p is the largest):
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Intuitions & toy example

If min(a, ) > y (and self-loop p is the largest):

Class 1
(Butterfly)

Class 2 p
(Clock)

Augmentation graph Learned representation space
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Intuitions & toy example

If min(a, ) > y (and self-loop p is the largest):

Class 1
(Butterfly)

Class 2 p
(Clock)
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Intuitions & toy example

If min(a, ) > y (and self-loop p is the largest):

Class 1
(Butterfly)

Class 2 p
(Clock)

Key condition for transfer: augmentations are more likely to change only

domain () or only class () than both domain and class (y)
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Class 1
(Butterfly)

Class 2 p

(Clock)

Intuitions & toy example

If instead a < y:
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Intuitions & toy example

If instead a < y:

Class 1
(Butterfly)

Class 2 p
(Clock)

If the condition is violated, the target features can be “swapped” so that a

source-trained linear classifier fails to generalize

47
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* Consider stochastic block model (SBM): extends to multiple domains,

multiple classes, and multiple examples per class/domain
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Generalization beyond simple example

* Consider stochastic block model (SBM): extends to multiple domains,

multiple classes, and multiple examples per class/domain

* We prove: same conditions (min(a, ) > y and p is largest) allow
contrastive pre-training to learn linearly transferable features (with easily

separable source and target features)

* Follow-up work generalizes beyond random graph models, with

asymmetry: HaoChen et al. 2022



Outline

» Test theoretical predictions on real data
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Connectivity predicts target accuracy

* Our theory predicts that target accuracy depends on «, 5, ¥ and

requiresthata >yand f >y

* Estimate a, 3, y by training a classifier to predict between augmented

images of different domains/classes, evaluate on held out examples

Wao

target accuracy =~ (a/7v)"“* - (8/7)

* Estimate wq, w, by fitting a linear function in log space and determine

quality of fit compared to a control



Predicting target accuracy (contrastive methods)
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Actual accuracy gain

Predicting target accuracy (controls)

DANN+strongaugs (final iterate)
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Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low
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* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIc f SIC f tgt

VS. fiet  VS. faom  VS. fdom

Living-17 0.397 0.013 0.016
DomainNet  0.187 0.018 0.018

60



Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIc f SIC f tgt

VS. figt | VS. faom  VS. fdom

Jtgt Living-17 | 0397 | 0013  0.016
DomainNet | 0.187 0.018 0.018

61



Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIc f SIC f tgt

VS. figt | VS. faom | VS. fdom

fdom Living-17 0.397 0.013 0.016
> DomainNet  0.187 0.018 0.018
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Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIc f SIC f tgt

VS. fiet  VS. faom | VS. fdom

fdom Jtgt Living-17 0.397 0.013 0.016
< > DomainNet  0.187 0.018 0.018

et
N %ds
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* Access to target unlabeled examples is important for robustness
(pretraining on source examples alone does not lead to robustness
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Target Unlabeled Data is Important

* Access to target unlabeled examples is important for robustness
(pretraining on source examples alone does not lead to robustness

gains)

ERM SwAV(S) SwAV(T) SwAV (S+T)

Living-17 63.29 62.71 70.41 75.12
Entity-30  52.52 52.33 60.33 62.03
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Concluding Thoughts: Why Pretraining?

* Rich organization can pretrain once, everyone can fine-tune for many

tasks cheaply

* This approach gets SOTA on many robustness datasets: WILDS-FMoW,

WILDS-iWildCam, ImageNet robustness, DomainNet

e Our paper: why does pretraining help? Is it just about having lots of

data?



Conclusion

e Contrastive pre-training is a competitive method for UDA



Conclusion

e Contrastive pre-training is a competitive method for UDA

* Works without collapsing source and target representations



Conclusion

e Contrastive pre-training is a competitive method for UDA
* Works without collapsing source and target representations

* Instead, disentangles class and domain information, enabling transfer

* Consequence of the structure of connections between domains and classes

via data augmentations
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Subgroup Robustness

Subgroup Robustness refers to the ability of a model
to achieve good performance across discrete subgroups
in a distribution.

This is an extreme version of subpopulation shift
where we evaluate shift on target datasets entirely of a
single (demographic) subpopulation.

Y

Y



With Great Progress Comes Great...Confusion?

Rapid Progress In Robust Learning

e Maximum Weighted Loss Discrepancy
(Khani et al. 2019)

e DRO (e.g. Duchi and Namkoong 2018,
Levy et al. 2020)

e Group DRO (Sagawa et al. 2020)

e DORO (Zhai et al. 2021)

...many more!
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Levy et al. 2020)

Group DRO (Sagawa et al. 2020)
DORO (Zhai et al. 2021)

...many more!

> Need for Reliable Evaluation

In other fields, large-scale empirical
baseline evaluations have been critical to
(re)assessing progress (Liao et al. 2021).

The use of unreliable statistical inference
methods in particular has led to
misleading signals of progress (Agarwal et
al. 2021).



With Great Progress Comes Great...Confusion?

Rapid Progress In Robust Learning > Need for Reliable Evaluation
e Maximum Weighted Loss Discrepancy In other fields, large-scale empirical
(Khani et al. 2019) baseline evaluations have been critical to
e DRO (e.g. Duchi and Namkoong 2018, (re)assessing progress (Liao et al. 2021).
Levy et al. 2020)
e Group DRO (Sagawa et al. 2020) The use of unreliable statistical inference
e DORO (Zhai et al. 2021) methods in particular has led to
* ..many more! misleading signals of progress (Agarwal et
al. 2021).

What is the current SOTA for subgroup
robustness in tabular data?
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Subgroup Robustness and Fairness

Large-Scale Methods for
Distributionally Robust Optimization
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O ized neural can be highly accurate on average on ani.i.d.

— test set yet consistently fail on atypical groups of the data (e.g., by learning spu-
rious correlations that hold on average but not in such groups). Distributionally
robust optimization (DRO) allows us to learn models that instead minimize the
worst-case training loss over a set of pre-defined groups. However, we find that
naively applying group DRO to overparameterized neural networks fails: these
models can perfectly fit the training data, and any model with vanishing average

1. training loss Instead the noor

training loss also already has
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overcoming sq improving the classification accuracy.

In line with other studies, our notion is oblivious: it depends only on the joint statistics of
the predictor, the target and the protected attribute, but not on interpretation of individual
1. Introduction features. We study the inherent limits of defining and identifying biases based on such
oblivious measures, outlining what can and cannot be inferred from different oblivious tests.

We illustrate our notion using a case study of FICO credit scores.
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—c test set yet consistently fail on atypical groups of the data (e.g., by learning spu-
rious correlations that hold on average but not in such groups). Distributionally
robust optimization (DRO) allows us to learn models that instead minimize the
worst-case training loss over a set of pre-defined groups. However, we find that
naively applying group DRO to overparameterized neural networks fails: these
models can perfectly fit the lmmmg data, and any model with vanishing average

training loss Instead the noor
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1 Introduction
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Tabular Data: Deep Learning’s “Unconquered Castle”

Common training examples Test examples

Widely used in practice but often a secondary 5 ek y landbird
focus in evaluating robust models Waterbirds backsrou % background (g

: waterbird Iy

B

. - d wad had messan  y: dark hale v ety n blon W
Often directly encodes sensitive subgroups of o : emal & a: male | i
interest ¥ 4

Challenging to model and SOTA performance [Sagawa et al. 2019]

is achieved with non-neural methods

Toxic Comment Text Male Female LGBTQ White Black ... Christian

0 | applaud your father. He was a good man! We need more like him. 1 0 0 0 0 0

0 As a Christian, | will not be patronizing any of those businesses. 0 0 0 0 0 1

0 What do Black and LGBT people have to do with bicycle licensing? 0 0 1 0 1 0

0 Government agencies track down foreign baddies and protect law- 0 0 0 1 0 0
abiding white citizens. How many shows does that describe?

1 Maybe you should learn to write a coherent sentence so we can 0 0 0 0 0 0
understand WTF your point is.

[Koh et al. 2020]



Current tabular SOTA

Model/baseline for most
robustness experiments

HELOC HIGGS Covertype Cal. Housing
Acc T AUC T Acc T AUC t Acc 1T AUC 1t Acc T AUC 1 MSE |
Lincar Model 73.04+0.0 80.1+0.1 82.5+40.2 85.4+0.2 64.14+0.0 68400 72.44+0.0 92.840.0 0.528+0.008
KNN [65] 72.240.0 79.04£0.1 83.240.2 87.5+0.2 62.340.1 67.1£0.0 70.240.1 90.140.2 0.4214+0.009
Decision Tree [197] 80.340.0 £9.340.1 853+0.2 89.840.1 71.3+0.0 78.7+0.0 79.14+0.0 95.04+0.0 0.404:£0.007
Random Forest [198] 82.1+0.2 90.040.2 86.14+0.2 91.7+0.2 71.940.0 79.7+0.0 78.140.1 96.1+0.0 0.27240.006
" XGBoost [53] 835402 922400  §73£02 928201 776400  §59£00  973+0.0 999400  0206+0.005 |
| LightGBM [78] 83.540.1 923400 874402 92.9+0.1 77.14+0.0 85.5+0.0 93.54+0.0 99.740.0 0.195+0.005 |
| iy | _BEAR | Sl mosons IO | TS0 N0 | SMEND [SEi00 | MSE0M
Model Trees [199] 82.6+0.2 91.5+0.0 85.04+0.2 90.4£0.1 69.84+0.0 76.7+0.0 - - 0.385+0.019
: MLP [200] 73.240.3 80.3%0.1 84.840.1 90.3+0.2 77.1+0.0 85.6:0.0 91.0+0.4 76.14+3.0 0.263£0.008 ;
TDeepIM [I3)T T T T MNEL0T T BoAL0.T T TVeTHE0T T TITLEDL T TeIL00 T OBFE00 T T T-T T T T T .= T T T2®IoToF
DecpGBM [70] 78.0:£0.4 84.1:0.1 84.6::0.3 90.8+0.1 74.54+0.0 83.0£0.0 - - 0.8560.065
RLN [72] 73.24+0.4 80.1+04 81.0£1.6 75.9+8.2 71.84+02 794+0.2 772415 920409 0.348+0.013
TabNet [5] 81.0+0.1 90.0£0.1 854402 91.1x0.1 76.54+1.3 849414 93.140.2 99.44+0.0 0.34640.007
VIME [88] 72.740.0 79.240.0 84.84+0.2 90.540.2 76.9402 855+0.1 90.940.1 829407 0.275+0.007
TabTransformer [98] 73.340.1 £0.1£0.2 85.240.2 90.6+0.2 73.834+0.0 81.940.0 76.540.3 729423 0.451+0.014
NODE [6] 79.840.2 875+0.2 85.6:+0.3 91.1+0.2 76.94-0.1 854+0.1 89.940.1 98.74+0.0 0.276+0.005
Net-DNF [57] 82.6+0.4 915+0.2 85.740.2 91.3%0.1 76.64+0.1 85.1+0.1 94.240.1 99.14+0.0 -
STG [201] 73.140.1 80.0£0.1 85.440.1 90.9£0.1 73.940.1 81.9+0.1 81.84+0.3 96.24+0.0 0.285+0.006
NAM [202] 73.340.1 80.7+0.3 83.440.1 86.6+0.1 53.940.6 55.0+1.2 - - 0.72540.022
SAINT [9] 821403 90.74+0.2 86.14+0.3 91.6+0.2 79.84+0.0 88.3+0.0 96.34+0.1 99.8:40.0 0.226::0.004

[Borisov et al. 2022]
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Datasets

Dataset
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7,215

1,994
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14,689
1,133
8,377
518
57

36

11



Datasets

Dataset

ACS Income*
ACS PubCov*
BRFSS*
LARC

Adult
COMPAS

Comm. & Crime

German Credit

Label

High/Low Income
Public Ins.
Diabetes

At-Risk (Grade)
High/Low Income
Recidivism
Elevated Crime

Credit Risk

Sens.

Race, Sex
Race, Sex
Race, Sex
URM Status, Sex
Race, Sex
Race, Sex

Income Lvl, Race

Age, Sex

499,350
379,430
175,745
169,032
48,845
7,215

1,994

1,000

20

19

28

26

113

22

Smallest Test
Subgroup

18,134
14,689
1,133
8,377
518
57

36

11



Outline

Results
Accuracy-Robustness Frontiers
Evaluating Evaluation Metrics + Model Selection Effects

Hyperparameter Sensitivity



Example: Experiment Results (Group DRO, BRFSS)

§ Group DRO
each point = 1 5 0.75 -85 i 8
hyperparameter & :;~.:[& 2 st
configuration < 650 P, oL paeg XY ,;(:ﬁ,}"
(1,620 total Q 0Bs — afoThH
shown) Q02 - 4 e Tl

: S

! ol

2 0.00 4 i i ] !

g 0.0 0.2 0.4 0.6 0.8

Accuracy



Example: Experiment Results (Group DRO, BRFSS)
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Metrics: Does what we measure matter?
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Model Performance Metrics: One Size Does Not Fit All
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Model Performance Metrics: One Size Does Not Fit All
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Trees are Robust to Model Selection Effects
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Trees are Robust to Model Selection Effects
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Trees are Less Sensitive to Choice of Hyperparameters
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Trees are Less Sensitive to Choice of Hyperparameters

Accuracy Sensitivity
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Takeaways

Tree-based models (XGBoost, LightGBM, etc.) are surprisingly strong subgroup robustness baselines.

These models are cheaper to train, less sensitive to hyperparameters, and less sensitive to the
model selection metric.
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Future Directions
This finding is specific to MLP-based models, which are the exclusive (tabular)
model evaluated in the robustness works we sought to benchmark.

— Does shifting away from MLPs close the gap with trees?

This may be an artifact of well-known relationship between in-distribution and
out-of-distribution accuracy (Miller et al. 2021).

— How can we make neural architectures more tree-like (or adopt
differentiable techniques for tree training to use robust learning) to take
advantage of this near-linear empirical relationship?
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Goal: Signal recovery in the presence of arbitrary, adversarial
corruptions.
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Robust Statistics

Goal: Signal recovery in the presence of arbitrary, adversarial
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Robust Statistics

Goal: Signal recovery in the presence of arbitrary, adversarial
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Robust Statistics

Goal: Signal recovery in the presence of arbitrary, adversarial
corruptions.
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An estimator is robust, if it is able to estimate the signal, even in
the presence of these corruptions.



Robust Statistics

Given: Samples from a distribution that is adversarially shifted in
TV.

Recover: Signal when you know some properties of the inlier
distribution
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Parameters of Interest

Fraction of Corruptions (€): As large as possible.

Sample complexity: As small as possible for the given e.

Runtime: As small as possible, as a function of the input size.
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Parameters of Interest

Fraction of Corruptions ()

Classical Robust Statistics
Sample complexity Tukey'60, Huber'64].

Runtime



Parameters of Interest

Fraction of Corruptions ()

Sample complexity
Algorithmic Robust Statistics

, [Diakonikolas-Kane-Kamath-Li-Moitra-
Runtime Stewart'16, Lai-Rao-Vempala'16]



Mean Estimation



Mean Estimation

Given: poly(d) samples drawn from @ on R? with mean u.

Recover: ji such that ||g — ||, is small.
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Mean Estimation

Given: poly(d) samples drawn from @ on R? with mean u.

Recover: ji such that ||g — ||, is small.
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Need 9 to be structured for the robust setting - typically Gaussian, Log-concave etc.



Sparse Mean Estimation

Given: poly(k, log(d)) samples, drawn from & with mean u,

where p is k-sparse.

Recover: /i such that ||f — u]|, is small.
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Robust Sparse Mean Estimation

Given: e-corrupted poly(k, log(d)) size sample set, inliers drawn
from @ on RY with a k-sparse mean p.

Recover: /i such that ||f — u]|, is small.
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Goal: Non-robust vs robust

Non-robust Setting

Sample complexity

Find an algorithm achieving
fastest rate of convergence.

Robust Setting

14— wll

J(€) 1

Sample complexity

Find algorithm achieving
slowest growing f.
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High-dimensional Mean Estimation:

® [Diakonikolas-Kane-Kamath-Li-Moitra-Stewart'16, Lai-Rao-Vempala'16]: Can tolerate a O(1) /
O(1/polylog(d)) fraction of Gaussian samples being corrupted respectively.

® [Kothari-Steurer'18, Hopkins-Li'18]: Recover results for more general class of distributions.

High-dimensional Sparse Mean Estimation:

® [Balakrishnan-Du-Li-Singh'17]: Solves the problem for #'(u, 1;). Requires ellipsoid method +
SDP.

® [Diakonikolas-K-Kane-Price-Stewart'19, Cheng-Diakonikolas-Kane-Ge-Gupta-Soltanokotabi’21]:
More practical algorithms for A (u, 1).

Question: Is there an algorithm in the sparse setting which can achieve near-
optimal guarantees with bounded, unknown covariance?
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Theorem: There exists an algorithm which,

® Takes n = O((k*/€e?) polylog(d/e€)) e-corrupted samples from
N (u, 2) for unknown u, 2.

® Runs in time poly(nd).

e Recovers ji satistying, [|f — pll, < 0(6)\/||Z||Op w.h.p.

We give nearly matching Statistical Query lower bound suggesting that Q(k*)
samples are necessary.
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1. The inlier distribution has its first f moments “certifiably” bounded by O(1).*
2. The covariance is unknown to the statistician.

Theorem: There exists an algorithm which,

klog(d))?"
o lakesn = ( 0g(2 ) e—corrupted samples.
€

® Runs in time poly((nd)").
® Returns /i satisfying ||ji — p|l, < O(e'™"") w.h.p.

We give nearly matching Statistical Query lower bound suggesting that this is
the optimal guarantee possible.

*We also need the first  log(d) moments bounded by O(1).
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