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Canonical learning paradigm

S = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟}

 ML

 ModelS′ = {x′ 1…x′ m |x′ i ∼iid 𝒟|X} {y′ 1…y′ m}



Are train and test identically distributed?

😞

Merely the passage of time leads to drift 
On features, on labels… 

And perhaps the distribution has changed because of the learning we’ve done 
We’ve chosen to sample from a non-iid distribution 
Data has “best responded” to our learning 



Training data and test data are (virtually never) 
distributed equally.

😞

Merely the passage of time leads to drift 
On features, on labels… 

And perhaps the distribution has changed because of the learning we’ve done 
We’ve chosen to sample from a non-iid distribution 
Data has “best responded” to our learning 

Often have multiple data sources, where some 
may be unlabelled 
may have auxilliary features 
likely follow different distributions



Instead, we often have

S = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟}

ML

moodel

S′ = {x′ 1…x′ m |x′ i ∼iid 𝒟|X} {y′ 1…y′ m}

S2 = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟2}

ML

 Model

S′ = {x′ 1…x′ m |x′ i ∼iid 𝒟2|X} {y′ 1…y′ m}

S2 = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟2}

ML

 Model

S′ = {x′ 1…x′ m |x′ i ∼iid 𝒟2|X} {y′ 1…y′ m}

…

Where our test distribution may be unknown 

and probably different from each training distribution



What should one do with i-non-i-d training data?

Standard uniform convergence isn’t super relevant…

(at least) some of the training data cannot follow the test distribution



What differs between distributions?

 —> covariate shift 
 —> model drift 

 —> additional features 
…

𝒟X
𝒟Y|X

X → X ∪ {f1, …, ft}



One application: learning from various hospitals

S = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟}

ML

moodel

{y′ 1…y′ m}

S2 = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟2}

ML

 Model

ML

 Model

…



Another: ``patching” an unfair model

ML

moodel

Observe high loss on some population P

Some interventions: 

- Dataset  
- Gather a brand new one / augment the existing one 
- possibly with demographic information  
- possibly with more folks from P 
- possibly with or without labels 

- Retrain



Primary point

S = {(x1, y1)…(xn, yn) | (xi, yi) ∼iid 𝒟}

ML

moodel

S′ = {x′ 1…x′ m |x′ i ∼iid 𝒟|X} {y′ 1…y′ m}

Reasoning about training on multiple data sources is super 
important, in particular with applications where one cares 
about equitable distribution of loss over different populations 
of people.



Related Work

Model subsumes: 
DRO  

[Scarf ’58, Záčková ‘66, Dupácová ‘87, Breton and El Hachem ‘95, Shapiro and 
Kleywegt ‘02, Shapiro and Ahmed ‘04] 

Semi-supervised learning 

Transfer learning/domain adaptation […] 
Generally assumes y|x might change, or x might change,  rarely handles auxilliary 
features. Either assumes no information about test distribution or assumes sample 
access to labeled or unlabeled test data at training time.  

DRO for fairness [HSNL’18] 

Multicalibration, omnipredictors [GKRSW’21, KKGR’22]



Outline

- Introduction and Motivation 
- Our model 

- And a “fairness application” 
- An algorithm designed for this problem 

- And a statement about its guarantees 
- Experimental results



A formal model

: features X, extra features A, radius DA rA

Build a linear model   which performs well  
on any distribution 

θ : (X × A) → Y
D′ ∈ BrP

(DP) ∩ BrA
(DA)

: features X, labels Y, radius DP rP



Distributionally robust optimization

DRO: 
Find θ ∈ argminf max

D′ :d(D′ ,D)≤r
ℓ( f, D′ )



Main result

Can utilize additional 
features to build a better 
predictor

: features X, extra features A, radius DA rA

There is an algorithm which finds 
linear  which performs well  
on any distribution  

for logistic loss, with additive error O(min( )  * coupling cost)

θ : (X × A) → Y
D′ ∈ BrP

(DP) ∩ BrA
(DA)

rP, rA

: features X, labels Y, radius DP rP



Main ideas behind the algorithm
: features X, extra features A, radius DA rA: features X, labels Y, radius DP rP

First, find a coupling between  and an unknown D’ 
Formulate an appropriate dual program 
Solve dual using projected gradient descent

DP, DA



A corollary for equitable prediction
: features X, extra features A, radius DA rA: features X, labels Y, radius DS rS

Suppose A contains demographic information. 
Then, we can compute a model to minimize 

 

where  is log loss, and LTPD is log-probabilistic equalized opportunity

θ = argminθℓ(θ, D′ ) − λ (LTPD(θ, D′ ))

ℓ

 Taskesen et al. [2020

LTPD(θ, 𝒫) = Pr
(x,a,y)∼𝒫

[u(hθ(x)) |a = 1,y = 1] − Pr
(x,a,y)∼𝒫

[u(hθ(x)) |a = 0,y = 1]

u(hθ(x)) = log ( 1
1 + exp( − ⟨θ, x⟩) )



Outline

- Introduction and Motivation 
- Our model 

- And a “fairness application” 
- An algorithm designed for this problem 

- And a statement about its guarantees 
- Experimental results



Experimental results: using all features

Datasets 
Breast Cancer  

( ) 
Ionosphere dataset  

( ) 
Heart Disease dataset  

( ) 
Handwritten Digits dataset (1 vs 8)  

( ) 

Uniformly randomly split training data into   with v datapoints in both and filter.

|m1, m2 | = {(5, 25), (25, 5)}

| (m1, m2) | = {(4, 30), (25, 9)}

| (m1, m2) | = {(5, 8)}

| (m1, m2) | = {(32, 32)}

SP, SA

https://archive.ics.uci.edu/ml/datasets/ionosphere

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

https://scikit- learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_

gits: This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+ 

https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://scikit-
http://learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+


Experimental results: using all features

Compare  DJ, our method, with 
LR: Logistic regression trained on  
RLR: Regularized logistic regression on  
LRO: Logistic regression on overlapped v datapoints 
RLRO: Regularized logistic regression on overlapped v datapoints 
FULL training on unfiltered 

SP
SP

SA ∪ SP

https://archive.ics.uci.edu/ml/datasets/ionosphere

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

https://scikit- learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_

gits: This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+ 

https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://scikit-
http://learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+


Experimental results: using all features
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DJ, our method 
LR: Logistic reg on  
RLR: Regularized logistic 
regression on  
LRO: Logistic regression on 
overlapped v datapoints 
RLRO: Regularized logistic 
regression on overlapped v 
datapoints 
FULL training on unfiltered 

 (labeled)

SP

SP

SA ∪ SP
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Accuracy, no shift



Remarks

DJ solves a harder problem than necessary here: it’s 
robust to distribution shifts.  

Other comparison points are not 

Nonetheless, it’s comparable to (and slightly better 
than) the best of the methods which don’t have 
strictly more information.



Experimental results: covariate shift

preliminary evidence on synthetic datasets 

 with shift in  
DJ also does quite well compared to LR, RLR, and DRLR on  

Still a lot more questions than answers here. 
How much is due to a larger sample  
versus optimizing over a smaller set? 

X, Y |X
SP



Open questions

Is our additive loss necessary for efficient computation? 



A generally interesting problem: 
multi-anchor DRO

DRO: 
Find θ ∈ argminf max

D′ :d(D′ ,D)≤r
ℓ( f, D′ )

Multi-anchor DRO: 
Find θ ∈ argminf max

D′ :d(D′ ,D1)≤r1∧d(D′ ,D2)≤r2∧…d(D′ ,Dk)≤rk

ℓ( f, D′ )



Circumspection

This method minimizes the max of differences in log-probabilistic equalized opportunity.  

Should not be considered an excuse to avoid the hard work of building good datasets



Benefits of using multiple sources

• Increased sample size 
• For covariate shift, can learn more about “ground truth”—> 

unnatural experiment? 
• Robustness to other distribution shifts



Part of a larger paradigm

Many of our ML ecosystems have additional structure/resources which may  
reduce the need to directly trade error minimization for equality of performance 
across demographics 

 — Additional active sampling [AAKMR’20] 
 — Models for predicting A from X  [ABKM’21,  AKM’20] 
 — Feature selection [STSMV’18, KAM’19] 
 — Correlation between (Y, A) and X


