Learning from multiple data sources

Jamie Morgenstern joint work with Chris Jung, Pranjal Awasthi

UNIVERSITY of WASHINGTON

Canonical learning paradigm

Are train and test identically distributed?

Merely the passage of time leads to drift On features, on labels...

And perhaps the distribution has changed *because* of the learning we've done We've chosen to sample from a non-iid distribution Data has "best responded" to our learning

Training data and test data are (virtually never) distributed equally.

Merely the passage of time leads to drift On features, on labels...

And perhaps the distribution has changed *because* of the learning we've done We've chosen to sample from a non-iid distribution Data has "best responded" to our learning

Often have multiple data sources, where some may be unlabelled may have auxilliary features likely follow different distributions

Instead, we often have

...

Where our test distribution may be unknown

and probably different from each training distribution

What should one do with i-non-i-d training data?

Standard uniform convergence isn't super relevant...

(at least) some of the training data cannot follow the test distribution

What differs between distributions?

 $\mathscr{D}_X \longrightarrow Covariate shift$ $\mathscr{D}_{Y|X} \longrightarrow Model drift$ $X \longrightarrow X \cup \{f_1, \dots, f_t\} \longrightarrow additional features$...

One application: learning from various hospitals

Another: ``patching" an unfair model

Observe high loss on some population P

Some interventions:

- Dataset
 - Gather a brand new one / augment the existing one
 - possibly with demographic information
 - possibly with more folks from P
 - possibly with or without labels
- Retrain

Reasoning about **training on multiple data sources** is super important, in particular with applications where one cares about equitable distribution of loss over different populations of people.

Model subsumes:

DRO

[Scarf '58, Záčková '66, Dupácová '87, Breton and El Hachem '95, Shapiro and Kleywegt '02, Shapiro and Ahmed '04] Semi-supervised learning

Transfer learning/domain adaptation [...]

Generally assumes y | x might change, or x might change, rarely handles auxilliary features. Either assumes no information about test distribution or assumes sample access to labeled or unlabeled test data at training time.

DRO for fairness [HSNL'18]

Multicalibration, omnipredictors [GKRSW'21, KKGR'22]

Outline

- Introduction and Motivation
- Our model
 - And a "fairness application"
- An algorithm designed for this problem
 - And a statement about its guarantees
- Experimental results

A formal model

 D_P : features X, labels Y, radius r_P

Build a linear model $\theta : (X \times A) \to Y$ which performs well on any distribution $D' \in B_{r_P}(D_P) \cap B_{r_A}(D_A)$

Distributionally robust optimization

DRO: Find $\theta \in \operatorname{argmin}_{f \underset{D': d(D', D) \leq r}{\operatorname{max}}} \ell(f, D')$

Main result

There is an algorithm which finds linear θ : $(X \times A) \rightarrow Y$ which performs well on any distribution $D' \in B_{r_P}(D_P) \cap B_{r_A}(D_A)$

for logistic loss, with additive error $O(min(r_P, r_A) * coupling cost)$

Can utilize additional features to build a better predictor

Main ideas behind the algorithm

First, find a coupling between D_P , D_A and an unknown D' Formulate an appropriate dual program Solve dual using projected gradient descent

A corollary for equitable prediction

Suppose A contains demographic information. Then, we can compute a model to minimize

 $\boldsymbol{\theta} = \mathrm{argmin}_{\boldsymbol{\theta}} \mathcal{E}(\boldsymbol{\theta}, D') - \lambda \left(LTPD(\boldsymbol{\theta}, D') \right)$

where ℓ is log loss, and LTPD is log-probabilistic equalized opportunity

Outline

- Introduction and Motivation
- Our model
 - And a "fairness application"
- An algorithm designed for this problem
 - And a statement about its guarantees
- Experimental results

Experimental results: using all features

Datasets

Breast Cancer

 $(|m_1, m_2| = \{(5, 25), (25, 5)\})$

Ionosphere dataset

 $(|(m_1, m_2)| = \{(4, 30), (25, 9)\})$

Heart Disease dataset

 $(|(m_1, m_2)| = \{(5, 8)\})$ Handwritten Digits dataset (1 vs 8) $(|(m_1, m_2)| = \{(32, 32)\})$

Uniformly randomly split training data into S_P , S_A with v datapoints in both and filter.

https://archive.ics.uci.edu/ml/datasets/ionosphere

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_

gits: This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+

Experimental results: using all features

Compare DJ, our method, with LR: Logistic regression trained on S_P RLR: Regularized logistic regression on S_P LRO: Logistic regression on overlapped v datapoints RLRO: Regularized logistic regression on overlapped v datapoints FULL training on unfiltered $S_A \cup S_P$

https://archive.ics.uci.edu/ml/datasets/ionosphere

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_

gits: This is a copy of the test dataset from https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+

Experimental results: using all features

DJ, our method LR: Logistic reg on S_P RLR: Regularized logistic regression on S_P LRO: Logistic regression on overlapped v datapoints RLRO: Regularized logistic regression on overlapped v datapoints FULL training on unfiltered $S_A \cup S_P$ (labeled)

DJ solves a harder problem than necessary here: it's robust to distribution shifts.

Other comparison points are not

Nonetheless, it's comparable to (and slightly better than) the best of the methods which don't have strictly more information.

Experimental results: covariate shift

preliminary evidence on synthetic datasets

with shift in X, Y | XDJ also does quite well compared to LR, RLR, and DRLR on S_P

Still a lot more questions than answers here. How much is due to a larger sample versus optimizing over a smaller set?

Is our additive loss necessary for efficient computation?

A generally interesting problem: multi-anchor DRO

DRO: Find $\theta \in \operatorname{argmin}_{f \underset{D':d(D',D) \leq r}{\operatorname{max}}} \ell(f,D')$

This method minimizes the max of differences in log-probabilistic equalized opportunity.

Should not be considered an excuse to avoid the hard work of building good datasets

Benefits of using multiple sources

- Increased sample size
- For covariate shift, can learn more about "ground truth"—> unnatural experiment?
- Robustness to other distribution shifts

Many of our ML ecosystems have additional structure/resources which may reduce the need to directly trade error minimization for equality of performance across demographics

- Additional active sampling [AAKMR'20]
- Models for predicting A from X [ABKM'21, AKM'20]
- Feature selection [STSMV'18, KAM'19]
- Correlation between (Y, A) and X