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1. Distributionally robust classification with Wasserstein ambiguity.

Nam Ho-Nguyen

“zero-one” classification

perturbation robustness vs Wasserstein robustness

robustness and risk

specialization to linear classification, and “benign nonconvexity” of
the resulting formulation.

2. Robust classification, generalized linear programming, and first-order
min-max algorithms.

Ahmet Alacaoglu, Jelena Diakonikolas, Chaobing Song, Eric Lin

The convex-concave min-max paradigm and generalized LP

Formulating robust classification

Algorithms
I Basics
I PURE-CD
I CLVR
I Complexity
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Classification

Consider the classification problem: find a decision boundary that
separates the red and blue points.
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Adversarial classification

Problem in image classification: small perturbations of images can
change the classification!1

Left: image of pig, classified correctly.
Right: incorrectly classified (wombat) identical pig obtained by adding
visually imperceptible noise (middle).

1
See https://adversarial-ml-tutorial.org/introduction/ for full details.
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Adversarial classification

This phenomenon arises because the points are too close to the decision
boundary.

We prefer a decision boundary that is “far away” from the points.
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Adversarial binary classification: Formalities

We have points (x , y) ∈ X × {±1} distributed according to P.

Seek f : X → R such that (ideally) sign(f (x)) = y .

(x , y) is misclassified ⇐⇒ yf (x) ≤ 0.

Want f such that P(x ,y)∼P [yf (x) ≤ 0] is small.

How to account perturbations of points?

Define the margin (or distance to misclassification)

dist(x , y , f ) := min
∆
{‖∆‖ : yf (x + ∆) ≤ 0}

(note: yf (x) ≤ 0 ⇐⇒ dist(x , y , f ) = 0).
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Choosing classifiers

Fix ε > 0 (defines “how much” we can perturb data points).

Don’t know P, but have i.i.d. samples (xi , yi ) ∼ P, i ∈ [n].

Let P̂n be the empirical distribution based on these samples.

Perturbation-robust classifier:

choose f ∈ F to minimize P(x ,y)∼P̂n
[dist(x , y , f ) ≤ ε].

Distributionally robust classifier:

choose f ∈ F to minimize max
d(Q,P̂n)≤ε

P(x ,y)∼Q [yf (x) ≤ 0]

for some distance d(·, ·) between distributions.
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Perturbation robustness

Fix f ∈ F . Perturbation robustness perturbs xi by ∆i to misclassify
yi f (xi + ∆i ) ≤ 0.

Subject to the constraints ‖∆i‖ ≤ ε for all i ∈ [n].

Perturbation robust classifier: try to classify the balls of radius ε
correctly (as much as possible).
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Wasserstein robustness

Distributionally robust classifier:

min
f ∈F

max
d(Q,P̂n)≤ε

P(x ,y)∼Q [yf (x) ≤ 0]

For distributionally robust classifiers, we claim that Wasserstein
distances are a natural choice2:

dW (Q,P) = min
Π

{
E(x ,x ′)∼Π[‖x − x ′‖] : Π has marginals PX ,QX

}
.

2
Formally this is the 1-Wasserstein distance defined with norm ‖ · ‖.
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Wasserstein worst-case distributions

Fix a classifier f ∈ F . We can characterize the worst-case distribution3

Q∗ = arg max
dW (Q,P̂n)≤ε

P(x ,y)∼Q [yf (x) ≤ 0].

Q∗ tries to perturb xi by ∆i to misclassify yi f (xi + ∆i ) ≤ 0.

Subject to constraint 1
n

∑
i∈[n] ‖∆i‖ ≤ ε.

If it cannot transport a whole point, it can “split” a point.

3
Chen, Kuhn, and Wiesemann Data-Driven Chance Constrained Programs over Wasserstein Balls 2018
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Why use Wasserstein robustness?

There are similarities between Wasserstein and perturbation
robustness.

Question: are there advantages to Wasserstein robust classifiers over
the more common perturbation robust classifiers?
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Generalized maximum margin classifiers

We say that the data {(xi , yi )}i∈[n] is separable if there exists f ∈ F
such that mini∈[n] dist(xi , yi , f ) > 0. The margin of a classifier is

γ(f ) := min
i∈[n]

dist(xi , yi , f ).

The maximum margin classifier is the function f that solves

max
f ∈F

γ(f ).
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Generalized maximum margin classifiers

For (potentially) non-separable data, we generalize by using a bilevel
formulation:

The generalized maximum margin is defined as follows:

ρ∗ := min
f ∈F

P(x ,y)∼P̂n
[yf (x) ≤ 0] (optimal empirical classification level)

F∗ := arg min
f ∈F

P(x ,y)∼P̂n
[yf (x) ≤ 0] (optimal empirical classifiers)

I(f ) := {i ∈ [n] : dist(xi , yi , f ) > 0} (correctly classified points)

γ(f ) := min
i∈I(f )

dist(xi , yi , f ) > 0 (margin on correctly classified points)

γ∗ := max
f ∈F
{γ(f ) : f ∈ F∗} . (max. margin on optimal classifiers)
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Wasserstein vs perturbation robustness

Minimizing Wasserstein worst-case error:

When ε < γ∗/n, classifier is guaranteed to maximize the generalized
margin.

Correctly classified points can be safely perturbed up to threshold γ∗.

Minimizing perturbation robust error:

When ε < γ∗, classifier is guaranteed to have margin γ(f ) ≥ ε.
Correctly classified points can be safely perturbed up to threshold
ε < γ∗.

Need to choose ε as close as possible to γ∗.

For “small” ε, Wasserstein robustness is advantageous.
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Robustness and risk

What happens when ε is not “small enough”? We can frame robustness in
terms of tail risk measures.

(Think of n = 100, and ρ = 0.05.)

VaRρ(dist(x , y , f ); P̂n)

:= sup
v

{
v : P(x ,y)∼P̂n

[dist(x , y , f ) < v ] ≤ ρ
}

(= the 5th-smallest margin dist(xi , yi , f ))

CVaRρ(dist(x , y , f ); P̂n)

:= sup
t

{
t +

1

ρ
E(x ,y)∼P̂n

[min{0, dist(x , y , f )− t}]
}

(≈ average of the 5 smallest margins).
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Robustness and risk

(n = 8, ρ = 3/8.) Margins dist(xi , yi , f ), i ∈ [n]. (Larger is better.)

dist(x, y, f) dist(x, y, f ′)
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Robustness and risk

(n = 8, ρ = 3/8.) VaR: third smallest margin. (Larger is better.)

dist(x, y, f) dist(x, y, f ′)
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Robustness and risk

(n = 8, ρ = 3/8.) CVaR: average of three smallest margins. (Larger is
better.)

dist(x, y, f) dist(x, y, f ′)
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Robustness and risk

Lemma

For ρ ∈ (0, 1), ε > 0,

P(x ,y)∼P̂n
[dist(x , y , f ) ≤ ε] ≤ ρ

⇐⇒ VaRρ(dist(x , y , f ); P̂n) ≥ ε

max
dW (Q,P̂n)≤ε

P(x ,y)∼Q [dist(x , y , f ) = 0] ≤ ρ

⇐⇒ ρCVaRρ(dist(x , y , f ); P̂n) ≥ ε
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Robustness and risk

Theorem

Fix ρ ∈ (0, 1), set

ε1 := max
f ∈F

VaRρ(dist(x , y , f ); P̂n)

ε2 := max
f ∈F

ρCVaRρ(dist(x , y , f ); P̂n).

Then

ρ = min
f ∈F

P(x ,y)∼P̂n
[dist(x , y , f ) ≤ ε1] (perturbation robustness)

= min
f ∈F

max
dW (Q,P̂n)≤ε2

P(x ,y)∼Q [dist(x , y , f ) = 0]. (Wasserstein robustness)

The type of robustness (Wasserstein vs perturbation) simply changes
the risk measure.

The level of robustness ε and the risk level ρ are closely related.
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Wasserstein vs perturbation robustness

For “small” ε, Wasserstein robustness is advantageous.

For arbitrary ε:

I Rigorous theory developed that shows:

F minimizing perturbation robust error equivalent to
maximizing value-at-risk of margin.

F minimizing Wasserstein robust error equivalent to
maximizing conditional value-at-risk of margin.

I Do we only want high proportion of “safe” points? Use
perturbation robustness.

I Or do we want to make “potentially unsafe” points hard to
perturb as well? Use Wasserstein robustness.
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DRO: Reformulation for linear classifiers

We now consider the class of linear classifiers:

F =
{
x 7→ w>x + b : w ∈ Rd , b ∈ R

}
.

Then

dist(x , y , (w , b)) =
max{0, y(w>x + b)}

‖w‖∗
.
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Reformulation for linear classifiers

Theorem

We can reformulatea

min
(w ,b)∈F

max
dW (Q,P̂n)≤ε

P(x ,y)∼Q [yf (x) ≤ 0]

≡ min
w ,b

ε‖w‖∗ +
1

n

∑
i∈[n]

LR(yi (w
>xi + b))


where LR(r) := max{0, 1− r} −max{0,−r} is a non-convex ramp loss.

a
The proof uses the dual representation for the Wasserstein distance.

Blanchet and Murthy Quantifying distributional model risk via optimal transport 2019
Chen, Kuhn, and Wiesemann Data-driven chance constrained programs over Wasserstein balls 2018
Gao and Kleywegt Distributionally robust stochastic optimization with Wasserstein distance 2016
Xie On distributionally robust chance constrained programs with Wasserstein distance 2019
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Solving for Wasserstein robust linear classifiers

min
w ,b

ε‖w‖∗ +
1

n

∑
i∈[n]

LR(yi (w
>xi + b))

 .

Solve by mixed-integer programming (highly non-scalable).

First-order based approaches.
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Solving for Wasserstein robust linear classifiers

Approximate ramp loss by smooth function ψσ:

LR(r) = max{0, 1− r} −max{0,−r}

≈ ψσ(r) := σ log

(
1 + exp

(
1− r

σ

))
− σ log

(
1 + exp

(
−r
σ

))
.

Use `2-norm ‖ · ‖ = ‖ · ‖2, replace with squared norm:

min
w ,b

1
2ε‖w‖

2
2 +

1

n

∑
i∈[n]

ψσ(yi (w
>xi + b))

 .
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Numerical experiments

Data generation:

xi ∈ Rd , yi ∈ {±1} for i ∈ [n].

xi ∼ N(0, 10I ) or N(0,Σ) (cond(Σ) = 10) or Laplace(0, 10I ).

Fix some unit vector w∗, set yi = sign
(
(w∗)>xi

)
for all i ∈ [n].

Adversarial perturbations: generate separable data, replace κn/2
points (xi , yi ) with (w∗)T xi > 0 (label yi = +1) with points further
from the boundary with wrong label:

x ′i = xi +
(

(w∗)>xi + 1
)
w∗, y ′i = −1.

Objective function: set ε = 0.1 (regularization), σ = 0.05 (smoothing).

Algorithms: nonlinear conjugate gradient (CG), L-BFGS, Newton’s
method with diagonal damping. Behavior was similar, so we display results
for CG only.
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Robustness: ramp vs hinge

We compare regularized ramp loss reformulation vs hinge loss classifiers
LH(r) = max{0, 1− r} (support vector machines).

Fix d = 10. Generate n = 10, 000 training points with different
adversarial parameter κ (horizontal axis).

Train both classifiers. Generate 100, 000 test points and compute the
misclassification error (vertical axis).
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Hinge (DRO formulation) much more robust to mislabelling.
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Local minimizers – empirical

Empirically: As n grows, the number of local minimizers decreases.

For given d , how large does n have to be to eliminate multiple local
minimizers?

XXXXXXXXXXXDistribution
d

5 10 20 40

N(0, 10I ) 800 1600 1600 6400
N(0,Σ) 1600 1600 3200 6400
Laplace(0, 10I ) 1600 1600 6400 12800

Table Approximate training set size n for a problem with dimension d to have
a single (global) minimizer, empirically determined.
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Local minimizers – theory

Definition

We say that a random variable x is spherically symmetric about 0 if we
can write x = r · s, where r is a random variable on R+ and s is a uniform
random variable on the unit sphere {s ∈ Rd : ‖s‖2 = 1}, with r and s
independent.

Spherically symmetric distributions include normal distributions, Student’s
t-distributions and Laplace distributions with identity covariance.
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Local minimizers – theory

Let

Fε(w) = 1
2ε‖w‖

2
2 + Ex ,y

[
LR

(
y
(
w>x

))]
= 1

2ε‖w‖
2
2 + lim

n→∞
1

n

∑
i∈[n]

LR

(
yi

(
w>xi

))
.

Recall y = sign((w∗)>x). When w 6= 0, we have

∇F (w) = εw − Ex∼E

[
1(0 ≤ w>x ≤ 1, (w∗)>x ≥ 0)x

]
.

Want to show: ∇F (w) = 0 only when w is a positive multiple of w∗.
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Local minimizers – theory

Theorem

Suppose that x is spherically symmetric about 0, and y = sign((w∗)>x).
Then for w that is not a positive multiple of w∗, we have ∇Fε(w) 6= 0.
Furthermore, there is a single stationary point of the form
w(ε) = α(ε)w∗, for a unique α(ε) > 0.

Note that at w = 0, Fε(w) is non-smooth. We can show that there is a
direction of descent in the w∗-direction.

Proved with a nice argument based on geometry of the region

R =
{
x : 0 ≤ w>x ≤ 1, (w∗)>x ≥ 0

}
.
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Summary of Part 1

Wasserstein robustness has favourable properties compared to
perturbation robustness.

Optimization is essentially a regularized ramp loss empirical risk
minimization problem.

I Previous links between regularization and robustness have been
studied.4

DRO reformulation gives rise to loss-regularizer pairs.

Non-convexity of the ramp loss is provably benign for a class of
distributions, meaning we can use first-order methods to find the
global minimum.

4
See, e.g.,

Xu and Mannor Robustness and regularization of support vector machines 2009
Bertsimas and Copenhaver Characterization of the equivalence of robustification and regularization in linear and
matrix regression 2018
Shafieezadeh-Abadeh, Kuhn and Mohajerin Esfahani Regularization via mass transportation 2019
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Part 2: Robust classification, generalized LP, first-order
min-max algorithms

min
x∈Rd

max
y∈Rn

L(x , y) (Min-Max)

where

L(x , y) =
n∑

i=1

[
〈Aix , yi 〉 − h∗i (yi )

]
+ g(x)

= 〈Ax , y〉 − h∗(y) + g(x),

h∗i : R→ R ∪ {+∞} is convex conjugate of hi :

h∗i (t) := sup
s

(st − hi (s))

(convex and extended-valued);

h∗(y) =
∑n

i=1 h
∗
i (yi ) (separable);

g : Rd → R ∪ {+∞} (convex and extended-valued);

Ai ∈ Rd is a row vector; A is the n × d matrix with rows Ai .
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More Specs

We consider cases in which A is dense and A is sparse.

In the case of sparse A, we assume for analysis that g is separable, that is,

g(x) =
d∑

j=1

gj (xj ).

All algorithms make use of the prox-operator denoted for diagonal
weighting matrix T � 0 and function g by proxT,g and defined

proxT,g (x) := arg min
u

1
2‖u − x‖2

T−1 + g(u)

= arg min
u

1

2

d∑
i=1

(xi − ui )
2

Tii
+ g(u).

Assume that we can compute prox-operators for g and h∗i “easily.”
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Generalized LP

min cT x + r(x) s.t. Ax = b, x ∈ X , (GLP)

which can be written in min-max form as

min
x∈X

max
y∈Rn

L(x , y) = 〈Ax , y〉+ cT x + r(x)− bT y ,

which is unconstrained and linear in y .

X ⊂ Rd is closed and convex, r is convex. We assume that the following
modified prox-operator is easy to compute:

proxX ,r (x̂) := arg min
z∈X

1
2‖z − x̂‖2

2 + r(z).

Ordinary LP: X = Rd
≥0 and r(·) = 0

Approximate Dynamic Programming [De Farias and Van Roy, 2003]

Optimal Transport [Villani, 2009]

DRO (f -divergence, Wasserstein) (see below)

relaxed Neural Net verification [Liu et al., 2020].
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GLP formulation of the DRO: Wasserstein 1-norm
Setup: sample vectors {a1, a2, . . . , an} in Rd with labels {b1, b2, . . . , bn},
where bi ∈ {1,−1}. Usual ERM problem is

min
w

1

n

n∑
i=1

h(bia
T
i w)

where h : R→ R ∪ {+∞} is convex (e.g. hinge loss).

Wasserstein metric defines a distance between distributions P and Q
over Rd × {−1, 1}, based on cost

ζ((a, b), (a′, b′)) = ‖a− a′‖1 + κ|b − b′|

for some κ > 0;

Pn = 1
n

∑n
i=1 δ(ai ,bi ) is the empirical distribution defined by the data;

Seek sup of the objective over the ball of radius ε around Pn (in space
of distributions over (a, b)) defined by the Wasserstein metric:

min
w∈Rd

sup
dist(P,Pn)≤ε

EP[h(baTw)].
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GLP formulation of the DRO: Wasserstein 1-norm

min
w ,λ,u,v ,s,t

ελ+
1

n

n∑
i=1

si

s.t. ui = bia
T
i w , i = 1, 2, . . . , n,

vi = −ui , i = 1, 2, . . . , n,

ti = 2κλ+ si , i = 1, 2, . . . , n,

h(ui ) ≤ si , i = 1, 2, . . . , n,

h(vi ) ≤ ti , i = 1, 2, . . . , n,

‖w‖∞ ≤ λ/M.

X is defined by the last 3 constraints. The corresponding prox operation is
separable so can be implemented easily.

See [Song et al., 2021a, Appendix C.2].
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GLP formulation of DRO: f -divergence

min
x∈X

sup
p∈Pε,n

n∑
i=1

pig(bi (a
T
i x)),

where

Pε,n =
{
p ∈ Rn

+ :
∑n

i=1 pi = 1, Df (p‖1/n) ≤ ε
n

}
is the ambiguity set,

g is a convex loss function,

Df is an f -divergence defined by Df (p‖q) =
∑n

i=1 qi f (pi/qi ) with
p, q ∈

{
p ∈ Rn

+ :
∑n

i=1 pi = 1
}

and f being a convex
function [Namkoong and Duchi, 2016].
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GLP formulation of DRO: f -divergence

When X is a (simple) compact convex set, the DRO problem with
f -divergence is equivalent to the following generalized LP:

min
x ,u,v ,w ,µ,q,γ

{
γ +

εµ1

n
+

1

n

n∑
i=1

µi f
∗
(qi

µi

)}
s.t. w + v − q

n
− γ1n = 0n,

ui = bia
T
i x , i = 1, 2, . . . , n,

µ1 = µ2 = · · · = µn,

g(ui ) ≤ wi , i = 1, 2, . . . , n,

qi ∈ µi dom(f ∗), i = 1, 2, . . . , n,

vi ≥ 0, µi ≥ 0, i = 1, 2, . . . , n,

x ∈ X .

See [Song et al., 2021a, Section 4].
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Basic Algorithms

x̄k+1 = proxτ,g (x̄k − τA>ȳk )

ȳk+1 = proxσ,h∗(ȳ
k + σAx̄k+1),

(GDA)

for positive step sizes τ and σ.

Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock, 2011] uses
extrapolation in the x step:

x̄k+1 = proxτ,g (x̄k − τA>(2ȳk − ȳk−1))

ȳk+1 = proxσ,h∗(ȳ
k + σAx̄k+1),

(PDHG)

Equivalent form of PDHG:

x̄k+1 = proxτ,g (x̂k − τA>ȳk ) (1a)

ȳk+1 = proxσ,h∗(ȳ
k + σAx̄k+1) (1b)

x̂k+1 = x̄k+1 − τA>(ȳk+1 − ȳk ). (1c)

Related to to Douglas-Rachford, Extrapolated gradient, ADMM.
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Algorithms: Additional Features

Theoretical convergence / complexity properties of these algorithms can
be improved (in some cases, including strong convexity / concavity and
sparsity) by adding extra features.

Coordinate descent: e.g. update random element(s) of y in (1b)
instead of the whole vector.

Variance Reduction: Adjust the update formula for x to account for
noise arising from coordinate update of y .

Dual Averaging: At step k , use a gradient term that is a weighted
average over all previous iterations.

Importance sampling: Apply different weights to different components
of each update (e.g. weight matrix T in definition of prox).

Iterate averaging: Output a weighted average of iterates, rather than
the final iterate for x .

Some are used by PURE-CD, VRPDA2, and CLVR.
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Complexity Analysis

Find upper bounds on the number of flops needed to reduce (expected)
measures of “primal-dual gap” below a given threshold ε > 0. Particularly
interested in dependence on ε as well as

Dimensions d (for primal x) and n (for dual y);

size of A: e.g. ‖A‖, maxi=1,2,...,n ‖Ai‖, or
∑n

i=1 ‖Ai‖;
nnz(A) (for sparse A);

Distance between (x0, y0) and the optimum (x?, y?).

Some algorithms (e.g. stochastic PDHG [Chambolle et al., 2018]) have
less impressive bounds yet perform well for some types of problems.
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PURE-CD: Sparse A [Alacaoglu et al., 2020]
Define notation J(i) := {j ∈ [d ] : Ai ,j 6= 0}

Assume that g is separable: g(x) =
∑d

j=1 gj (xj ).

1: Initialize x0 ∈ dom g , y0 ∈ dom h∗;
2: for k ≥ 0 do
3: Pick ik ∈ [n] with Pr(ik = i) = 1

n
4:

[
x̄k+1 = proxτk ,g

(
xk − τk (A>yk )

)]
J(ik )

5:
[
yk+1 = proxσk ,h∗(y

k + σkAx̄k+1)
]

ik
;

[
yk+1 = yk

]
\ik

6:

[
xk+1 = x̄k+1 − τkθkAT

ik
(yk+1

ik
− yk

ik
)
]

J(ik )
;
[
xk+1 = xk

]
\J(ik )

7: end for

Notation:

[·]J means that the formula is executed on only the components
indexed by the set J.

[·]\J means that the formula is executed on all components except
those indexed by the set J.
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PURE-CD Sparse: Complexity Results for Min-Max

Focus on results where strong convexity is present in g and/or h∗ (both
separable functions).

Each gj has modulus of convexity µg ≥ 0;

Each h∗i has modulus of convexity µh ≥ 0,

Results are for last iterates xK and/or yK , not averaged iterates.

When µg > 0 and µh > 0, we have E
[
‖xK − x?‖2 + ‖yK − y?‖2

]
≤ ε

with expected complexity 5

Õ

(
nnz(A)

maxi ‖Ai‖√
µhµg

log ε−1

)
.

Choices of Θk , σk
i , Tk do not depend on k, but require knowledge of µg

and µh

5assuming maxi ‖Ai‖ ≥
√
µhµg
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PURE-CD Sparse: Complexity Results for Min-Max

When µg > 0 but possibly µh = 0 (strong convexity in g only) can make a
(complicated) choice of parameters to ensure that E

[
‖xK − x?‖2

]
≤ ε

with expected complexity

O

(
nnz(A)

√
D?
ε

maxi ‖Ai‖
µg

)
,

When µh > 0 but possibly µg = 0 (strong convexity in h only) a different
(still complicated) choice of parameters σk

j , τk
j , Θk ensures that

E
[
‖yK − y?‖2

]
≤ ε with expected complexity

O

(
nnz(A)

√
D?
ε

maxi ‖Ai‖
µh

)
,

Here D? depends on (x0, y0) and (x∗, y∗).
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Complexity Comparisons

The PURE-CD complexity bounds are compared with various other
algorithms for Min-Max, or special cases of it:

PDHG [Chambolle and Pock, 2011]

SPDHG [Chambolle et al., 2018]

VRPDA [Song et al., 2021b]

CLVR [Song et al., 2021a]

SPDAD [Tan et al., 2020]

VRVI [Carmon et al., 2019, Alacaoglu and Malitsky, 2022]

Katyusha [Allen-Zhu, 2017]

SPDC [Zhang and Lin, 2015]

In each case, PURE-CD matches or improves the complexities of these
alternatives, in terms of their dependence on n, d , measures of A, ε.

A typical improvement is ‖A‖ → maxi ‖Ai‖ – a factor of up to
√
n.

S. Wright (UW-Madison) Robust Formulations and Algorithms DRDS, August, 2022 45 / 54



Comments on Proofs

The proofs of these complexity results are extremely technical, involving
mostly elementary manipulation of inequalities.

Telescoping sums over iterations k = 1, 2, . . . ,K is used often, and
convexity is essential.

But considerable expertise is needed to choose the algorithmic parameters
Tk , σk

i , Θk to achieve the desired cancellations.
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CLVR Algorithm for GLP [Song et al., 2021a]

min cT x + r(x) s.t. Ax = b, x ∈ X . (GLP)

Partition A into m row blocks – index partition {S1, S2, . . . ,Sm}.

1: Input: x0 ∈ X , y0 ∈ Rn, z0 = AT y0, γ > 0, L̂ > 0, σ ≥ 0,K .
2: a1 = B1 = 1

2L̂m
, q0 = a1(z0 + c).

3: for k = 1, 2, . . . ,K do
4: xk = prox 1

γ Bk r (x0 − 1
γ q

k−1).

5: Pick jk uniformly at random in {1, 2, . . . ,m}.
6: [yk = yk−1]\S jk ; [yk = yk−1 + γmak (Axk − b)]S jk ;

7: ak+1 =

√
1+σBk/γ

2L̂m
, Bk+1 = Bk + ak+1.

8: zk = zk−1 + AT
S jk

(yk
S jk
− yk−1

S jk
).

9: qk = qk−1 + ak+1

(
zk + c

)
+ mak (zk − zk−1).

10: end for
11: return weighted averages xK and yK .
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CLVR: Notes and Complexity

Again related to PDHD but with variations. Exploits the fact that the
Min-Max formulation is linear and unconstrained in y .

Averaged gradients in x , block coordinate descent in y .

Recall that specialized prox-operator involves constraint set X .

Can be implemented in a way that exploits sparsity in A

I ....but this involves intermediate vectors and is more complicated
than in Sparse PURE-CD.

No special initialization required (unlike VRPDA2).

Expected complexity for EG (xK , yK , x?, y?) < ε in Sparse CLVR is

O

(
nnz(A) maxi=1,2,...,m ‖AS i‖

ε

)
.
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Computational Results: Wasserstein DRO

Wasserstein DRO described above, with `1 norm and hinge loss.

Several standard ML datasets (LIBSVM).

Implemented in Julia. Use SparseArrays to support sparse vectors
and matrices.

CLVR uses blocks to improve utilization of multiple cores.
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Comparing with General LP solvers (times)
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Summary of Part 2

Generalized LP is a nice framework for DRO classificaition with linear
models.

Generalized LP are a special case of convex-concave saddle point
problems with bilinear coupling, therefore admit the use of powerful
first-order methods such as PURE-CD and CLVR.

The resulting computational approach may be advantageous on
problems of extreme scale.
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