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Optimization and Statistical Estimation

Optimization:
minimize a “cost” expression under constraints on the decision
the constraints could involve bounds on other “costs”
the “costs” may have a background in statistical analysis

Statistical Estimation:
approximate some quantity from empirical/historical data
minimize an error expression to get regression coefficients
different interpretations of “error” yield different results

Interplay: so very interrelated!



Uncertain “Costs”/“Losses”/“Damages”

“Costs”: quantities to be minimized or kept below given levels
(this fits better with optimization conventions than “rewards”)

General “cost” expression in decision-making:
c(x , v) with x = decision vector, v = data vector

x = (x1, . . . , xn), v = (v1, . . . , vm)

Stochastic uncertainty:
v is replaced by a random variable vector V = (V1, . . . ,Vm)
then “cost” becomes a random variable: c (x) = c(x ,V )

Portfolio example in finance:
Vj = random return on asset j , xj = amount of j in portfolio
c (x) = c(x ,V ) = −[x1V1+ · · ·+ xnVn] (random loss incurred)

Design examples in engineering: “cost” ←→ “hazard”



Challenges in Optimization Modeling

“cost” c (x) = random variable depending on decision x
outcomes < 0, if any, correspond to “rewards”

Key issue in problem formulation

• the distribution of c (x) can only be shaped by the choice of x

• but how then can constraints and minimization be understood?



A Broad Pattern for Handling Risk in Optimization

Risk measures: functionals R that “quantify the risk” in a
random variable X by a numerical value R(X )

(“risk” ̸= “uncertainty”)

Systematic prescription

Faced with an uncertain “cost” c (x) = c(x ,V ) articulate it
numerically as c̄(x) = R(c (x)) for a choice of risk measure R

Constraints: keeping c (x) “acceptably” ≤ b
modeled as: constraint c̄(x) = R(c (x)) ≤ b

Objectives: making c (x) as “acceptably” low as possible
modeled as: minimizing c̄(x) = R(c (x))

i.e., minimizing the threshold level b such that
x can be selected with c (x) “acceptably” ≤ b



Stochastic Framework

Space of future states: Ω with elements ω (“scenarios”)

A0 = field of subsets of Ω, P0 = probability measure on A0

Random variables: functions X : Ω→ IR (A0-measurable)

EX = µ(X ) =
∫
Ω X (ω)dP0(ω), σ2(X ) = E [(X − EX )2]

Function space setting: X ∈ L2 := L2(Ω,A0,P0) for simplicity
Hilbert space of random variables with finite mean and variance

⟨X ,Y ⟩ = E [XY ], ||X || =
√

E [X 2]

Treatment of probability alternatives

Measures P can be represented by densities dP
dP0

with respect to P0

EP(X ) =
∫
Ω X (ω) dP

dP0
(ω)dP0(ω) = ⟨X ,Q⟩ for Q = dP

dP0

[sets P of alternatives P]←→ [sets Q of Q ∈ L2: Q ≥ 0, EQ = 1]



Axiomatization of Risk

Axioms for regular measures of risk: R : L2 → (−∞,∞]

(R1) R(C ) = C for all constants C
(R2) convexity, (R3) closedness (lower semicontinuity)
(R4) aversity: R(X ) > EX for nonconstant X

Additional properties of major interest:
(R5) positive homogeneity: R(λX ) = λR(X ) when λ > 0
(R6) monotonicity: R(X ) ≤ R(X ′) when X ≤ X ′

Coherent measures of risk: R satisfying (R1), (R2), (R5), (R6)
Artzner et al. (2000) introduced coherency without aversity

Preservation of convexity under (R1)+(R2)+(R6)

c (x) = c(x ,V ) convex in x =⇒ c̄(x) = R(c (x)) convex in x



Some Common Approaches From This Perspective

Best guess of future state: R(X ) = X (ω̄) (prob(ω̄) > 0)
then R(X ) ≤ b ⇐⇒ X (ω̄) ≤ b

−→ coherent but not averse (and lacking any ability to hedge)

Focusing on worst cases: R(X ) = supX (ess. sup)
then R(X ) ≤ b ⇐⇒ X ≤ b almost surely

−→ coherent, averse (but perhaps overly conservative, infeasible)

Passing to expectations: R(X ) = µ(X ) = EX
then R(X ) ≤ b ⇐⇒ X ≤ b “on average”

−→ coherent but not averse (perhaps too feeble)

Adopting a safety margin: R(X ) = µ(X ) + λσ(X ) λ > 0
then R(X ) ≤ b unless in tail > λ standard deviations

−→ averse but not coherent (lacks monotonicity!)



Quantiles and Superquantiles

FX = cumulative distribution function for random variable X

p-Quantile: “value-at-risk” in finance

qp(X ) = “F−1
X (p)”

p-Superquantile: “conditional value-at-risk” in finance

Qp(X ) =“E [X |X ≥ qp(X ) ]”= 1
1−p

∫ 1
p qt(X )dt

mathematical behavior: quantiles bad, superquantiles good!



Corresponding Risk Thresholds

Looking at quantiles: R(X ) = qp(X )
then R(X ) ≤ b ⇐⇒ prob{X ≤ b} ≥ p

−→ not coherent, not averse (troublesome, subject to criticism)

Superquantiles instead: R(X ) = Qp(X )
then R(X ) ≤ b ⇐⇒ c (x) ≤ b on average in upper p-tail

−→ coherent, averse (easy to work with and more conservative!)

Corresponding concepts of “failure”

c (x) = c(x ,V ) captures “hazard,” failure ←→ outcomes > 0

qp(c (x)) ≤ 0 means ordinary probability of failure is ≤ 1− p
Qp(c (x)) ≤ 0 means buffered probability of failure is ≤ 1− p

Example: case of p = 0.9, focusing on the worst 10% of events
−→ buffered probability of failure ≤ 0.1 means: even in that

tail range, the hazard variable comes out “safe on average”



Associated Minimization Formula

Qp(X ) = min
C∈IR

{
C + 1

1−pE [ max{0,X − C} ]
}
for p ∈ (0, 1)

qp(X ) = argmin (if unique, otherwise the lowest)

Application to superquantile models: convert a problem in x

minimize Qp0(c 0(x)) subject to [basic constraints and]
Qpi (c i (x)) ≤ bi for i = 1, . . . ,m

into a problem in x and auxiliary variables C0,C1, . . . ,Cm,

minimize C0 +
1

1−p0
E [ max{0, c 0(x)− C0} ] while requiring

Ci +
1

1−pi
E [ max{0, c i (x)− Ci} ] ≤ bi , i = 1, . . . ,m

Important case: this converts to linear programming when
(1) each c i (x) = ci (x ,V ) depends linearly on x ,
(2) the future state space Ω is modeled as finite



Stochastic Ambiguity, Admitting Alternative Probabilities

Probability density functions: Q ∈ L2 with Q ≥ 0, EQ = 1

=⇒ Q = dP
dP0

for some probability measure P

EP(X ) = ⟨X ,Q⟩ = E [XQ] =
∫
Ω X (ω) dP

dP0
(ω)dP0(ω)

the underlying probability measure P0 corresponds to Q ≡ 1

Stochastic ambiguity: not trusting just P0, looking at other P
interested in supP∈P EP(X ) instead of just EX = EP0(X )

Risk envelopes: sets Q ⊂ L2 consisting of probability densities Q
interested in R(X ) = supQ∈Q E [XQ] as a measure of risk

note: R is unaffected if Q replaced by its closed convex hull

Regularity of a risk envelope:
Q is closed convex ̸= ∅ and 1 ∈ Q, but 1 isn’t a “support point”

(i.e., ̸ ∃ hyperplane touching Q at Q ≡ 1 without ⊃ Q)



Robustness: Dualization of Monotonic Measures of Risk

Risk envelope characterization, positively homogeneous case

R(X ) = supQ∈Q E [XQ], Q =
{
Q
∣∣E [XQ] ≤ R(X ), ∀X

}
furnishes a one-to-one correspondence between
(a) regular risk measures R that are monotonic + pos. homog.
(b) regular risk envelopes Q, as above

Risk envelope characterization, general case −→ “divergences” J
R(X ) = supQ∈Q

{
E [XQ]− J (Q)

}
,

J (Q) = supX∈L2

{
E [XQ]−R(Q)

}
, Q = cl(domJ )

furnishes a one-to-one correspondence between
(a) regular risk measures R that are monotonic
(b) regular risk envelopes Q as cl(domJ ) for a closed convex

functional J : L2 → [0,∞] such that J (1) = 0 = minJ

J (Q) assesses the “divergence” of Q = dP
dP0

from 1 = dP0
dP0



Some Examples of Risk Dualization

Risk measures with positive homogeneity:

• for R(X ) = Qp(X ) = CVaRp(X ) the risk envelope is:
Q =

{
Q
∣∣Q ≥ 0, EQ = 1, Q ≤ 1

1−p

}
• for R(X ) = supX the risk envelope is:

Q =
{
Q
∣∣Q ≥ 0, EQ = 1

}
(the full “probability simplex”)

Risk measures without positive homogeneity:

R(X ) = log E [expX ] is a regular measure of risk that is also
monotonic but not positively homogeneous. Its risk envelope is
Q = probability simplex supplied with J (Q) = −E [Q logQ]

Note: for Q = dP/P0, the Bolzano-Shannon entropy expression

−E [Q logQ] = −
∫
Ω

[
dP
dP0

(ω) log dP
dP0

(ω)
]
dP0(ω)

is known as the Kullback-Leibler divergence of P from P0.



The Risk Quadrangle — A New Paradigm

an array of “quantifications” be applied to random variables X

“cost” orientation of X : high outcomes bad, low outcomes good

risk R ←→ D deviation

optimization ↑↓ S ↓↑ statistics

regret V ←→ E error

R(X ) elicits the “level of cost” in X to use in making comparisons
V(X ) quantifies the “anti-utility” in outcomes X > 0 versus X ≤ 0
D(X ) measures the “nonconstancy” in X as its uncertainty
E(X ) measures the “nonzeroness” in X for use in estimates
S(X ) is a “statistic” associated with X through E and through V



Background Source

−→ for references, details and examples behind this talk

R.T. Rockafellar and S.P. Uryasev (2013),

“The fundamental risk quadrangle in risk management,
optimization and statistical estimation,”

Surveys in Management Science and O.R. 18, 33–53.

downloads: www.math.washington.edu/∼rtr/mypage.html

(look for item #218)



Some CVaR/Superquantile References

[1] R.T. Rockafellar and S.P. Uryasev (2000),
“ Optimization of Conditional Value-at-Risk,”

Journal of Risk 2, 21–42.

[2] R.T. Rockafellar and S.P. Uryasev (2002),
“ Conditional Value-at-Risk for General Loss Distributions,”

Journal of Banking and Finance 26, 1443–1471.

[3] R. T. Rockafellar, J. O. Royset (2010),
“On Buffered Failure Prob. in Design and Optim. of Structures,”

Journal of Reliability Engineering and System Safety 95, 499–510.

downloads: www.math.washington.edu/∼rtr/mypage.html
look for items #179, #187, #211



“Robust” Optimization Revisited and Refined

Motivation behind so-called “robust” optimization:
• probabilities are often hard to assess, even as guesswork
• they can be avoided by focusing on R(X ) = supω∈Ω X (ω)

Practical compromise/pitfall: this depends on the model for Ω
• which “scenarios” ω should go into Ω as the uncertainty set?
• subjective probability enters in deciding which ones to exclude

Nested robustness

Let Ω be partitioned into Ω1, . . . ,ΩN with pk = prob[Ωk ], and let

R(X ) =
∑N

k=1 pk supω∈Ωk
X (ω).

Then R is regular, monotonic, pos. homogeneous, with envelope
Q =

{
Q
∣∣Q ≥ 0, probQ [Ωk ] = pk , ∀ k

}
,

Alternative interpretation:
• the partition generates an information field A
• Q ←→ all prob. measures P consistent with that information



Recalling the Risk Quadrangle for the Next Development

risk R ←→ D deviation

optimization ↑↓ S ↓↑ statistics

regret V ←→ E error

R(X ) elicits the “level of cost” in X to use in making comparisons
V(X ) quantifies the “anti-utility” in outcomes X > 0 versus X ≤ 0
D(X ) measures the “nonconstancy” in X as its uncertainty
E(X ) measures the “nonzeroness” in X for use in estimates
S(X ) is a “statistic” associated with X through E and through V



Regret Versus Utility

Regret: the “compensation” V(X ) for facing a future cost/loss X
in contrast to the “utility” U(Y ) perceived in a future gain Y

V(X ) = −U(−X ) ←→ U(Y ) = −V(−Y )

Axioms for regular measures of regret: V : L2 → (−∞,∞]
(V1) V(0) = 0 , (V2) convexity, (V3) closedness
(V4) aversity: V(X ) > EX for nonconstant X

Additional properties of major interest:
(V5) positive homogeneity: V(λX ) = λV(X ) when λ > 0
(V6) monotonicity: V(X ) ≤ V(X ′) when X ≤ X ′

=⇒ axioms for regular measures of utility U : L2 → [−∞,∞)
(more explanation of utility connections will come later)

regret is oriented to minimizing, utility is oriented to maximizing



Risk From Regret

Goal: generalize to other risk measures the superquantile formula

Qp(X ) = min
C∈IR

{
C + 1

1−pE [ max{0,X − C} ]
}
, qp(X ) = argmin

Trade-off Theorem

For any regular measure of regret V, the formula
R(X ) = minC∈IR

{
C + V(X − C )

}
defines a regular measure of risk R such that

V monotonic =⇒ R monotonic
V pos. homog. =⇒ R pos. homog.

Trade-off interpretation:
C = “designated loss” (to be written off here and now)
X − C = “residual loss” (still to be faced in the future)

Application to insurance: the argmin leads to the “premium”

Optimization role: simplifying R to V in objective/constraints



More About Utility

Finance question: for random variables Y representing monetary
gains, how to think of one as being preferable to another?

Traditional approach through expected utility

• there is a utility function u to apply to money amounts y
• the functional U : Y → U(Y ) = E [u(Y )] is then the key:

Y1 is preferred (strictly) to Y2 ⇐⇒ U(Y1) > U(Y2)

Background: von Neumann/Morgenstern theory for “lotteries”
the utility function u is concave and nondecreasing,
and can be normalized to have u(0) = 0 and u(y) ≤ y

=⇒ a benchmark focus with utility scaled to money, in which
U is concave, nondecreasing, with U(0) = 0 and U(Y ) ≤ E [Y ]

Regular measures of utility: such U(Y ) more generally



Utility and Regret in the Monotonic Expectational Case

Expected utility: U(Y ) = E [u(Y )] (normalized u)
u(y) concave, nondecreasing with u(0) = 0, u(y) ≤ y

Expected regret: V(X ) = E [v(X )]
v(x) convex, nondecreasing with v(0) = 0, v(x) ≥ x

v(x) = −u(−x) ←→ u(y) = −v(−y)

\0 1 /'
/

Superquantile formula example: V(X ) = 1
1−pE [max{0,X}]

v(x) = 1
1−p max{0, x}, u(y) = 1

1−p min{0, y}



Measures of Utility Beyond Simple Expected Utility

Utility reflecting stochastic ambiguity

• Let u be a nondecreasing concave utility function, normalized
• For a risk envelope Q0 and an associated divergence J0, let

U(Y ) = infQ∈Q0

{
E [u(Y )Q] + J0(Q)

}
Then U is a regular measure of utility that is monotonic:
U is concave, nondecreasing, with U(0) = 0 and U(Y ) ≤ E [Y ]

Corresponding ambiguity version of regret

• Let v be a nondecreasing convex regret function
• For a risk envelope Q0 and an associated divergence J0, let

V(X ) = supQ∈Q0

{
E [v(X )Q]− J0(Q)

}
Then V is a regular measure of regret that is monotonic

Relation to risk: for the risk measure R0 dual to Q0, J0,
U(Y ) = −R0(−u(Y )), V(X ) = R0(v(X ))



Passing Now to the Statistics Side of the Risk Quadrangle

risk R ←→ D deviation

optimization ↑↓ S ↓↑ statistics

regret V ←→ E error

R(X ) elicits the “level of cost” in X to use in making comparisons
V(X ) quantifies the “anti-utility” in outcomes X > 0 versus X ≤ 0
D(X ) measures the “nonconstancy” in X as its uncertainty
E(X ) measures the “nonzeroness” in X for use in estimates
S(X ) is a “statistic” associated with X through E and through V



Deviation as a Quantification of Uncertainty

D(X ) generalizes standard deviation σ(X )

Axioms for regular measures of deviation: D : L2 → [0,∞]

(D1) D(C ) = 0 for constant random variables C
(D2) convexity, (D3) closedness
(D4) robustness: D(X ) > 0 for nonconstant X

Additional properties of major interest:
(D5) positive homogeneity: D(λX ) = λD(X ) when λ > 0
(D6) upper range boundedness: D(X ) ≤ supX − EX

Note: (D1)+(D2) =⇒ D(X + C ) = D(X ) for constants C
symmetry not assumed, perhaps D(−X ) ̸= D(X )

Example: D(X ) = σ(X ) = ||X − EX || fails to satisfy (D6), but
D(X ) = σ+(X ) = ||max{0,X − EX}|| satisfies all

Extended CAPM: obtained with D(X ) replacing σ(X ) (finance)



Risk Versus Deviation

quantification of “cost/loss” versus quantification of uncertainty

Mean+deviation representation of risk measures

A one-to-one correspondence D ←→ R between regular risk
measures R and regular deviation measures D is given by

R(X ) = EX +D(X ), D(X ) = R(X − EX ),

where moreover monotonicity (R6) of risk is characterized by

R(X ) satisfies (R6) ⇐⇒ D(X ) satisfies (D6)

Example 1: the risk measure R(X ) = EX + λσ(X ), λ > 0,
is regular but not monotonic because D(X ) = λσ(X ) fails (D6)

Example 2: the deviation measure D(X ) = CVaRp(X − EX )
is not only regular but also, in addition, satisfies (D6)



Deviation From Error

looking now at a concept of “error” that can be asymmetric
Axioms for regular measures of error: E : L2 → [0,∞]

(E1) E(0) = 0 , (E2) convexity, (E3) closedness
(E4) robustness: E(X ) > 0 for nonzero X

Additional properties of major interest:
(E5) positive homogeneity: E(λX ) = λE(X ) when λ > 0
(E6) E(X ) ≤ |EX | when X ≤ 0

Error projection (with respect to constants C )

For a regular error measure E , let
D(X ) = minC E(X − C ), S(X ) = argminC E(X − C ).

Then D is a regular deviation measure, S the associated “statistic”
E(X ) satisfies (E6) =⇒ D(X ) satisfies (D6)

−→ S(X ) is the constant C “nearest” to X with respect to E



Some Error/Statistic Examples

Example 1: E(X ) =
√
E [X 2] yields S(X ) = EX

this regular measure of error fails to satisfy (E6)

Example 2: E(X ) = E |X | yields S(X ) = median of X
this regular measure of error satisfies all

Example 3: E(X ) = sup |X | yields S(X ) = 1
2 [supX + inf X ]

this regular measure of error fails to satisfy (E6)

Example 4: E(X ) = 1
1−pE [max{0,X}]− EX yields

the p-quantile statistic S(X ) = qp(X )
this asymmetric regular measure of error satisfies all

Example 5: E(X )=E [expX−X−1] yields S(X ) = log E [expX ]
this asymmetric regular measure of error satisfies all



Databases — the Need for Estimation

Available information: e.g. a large collection of pairs (xk , yk)

Perspective: empirical distribution in x , y space of r.v.’s X ,Y

Approximation: Y ≈ aX + b, error gap Z (a, b) = Y − [aX + b]



Regression From a Broader Point of View

Y = random variable (scalar) to be understood in terms of
X1, . . . ,Xn = some “more basic” variables (e.g., “factors”)

Approximation scheme: Y ≈ f (X1, . . . ,Xn) for f ∈ F
F = some specified class of functions f : IRn → IR

e.g. linear, f (x1, . . . , xn) = c0 + c1x1 + · · ·+ cnxn

error gap variable: Zf = Y − f (X1, . . . ,Xn) for f ∈ F

Regression problem, in general

minimize E(Zf ) over all f ∈ F for some error measure E

Standard regression: E(Zf ) = (E [Z 2
f ])

1/2 “least squares”

Quantile regression: using Z+= max{0,Z}, Z−= max{0,−Z}
E(Zf ) = E [ p

1−pZ
+

f + Z−
f ] at probability level p ∈ (0, 1)

Koenker-Basset error, normalized



Effect of the Choice of Error Measure

error gap variable to be “made small”: Zf = Y − f (X1, . . . ,Xn)

Regression problem “decomposition” (when f ∈ F ⇒ f + C ∈ F)

minimizing E(Zf ) over all f ∈ F corresponds to
minimizing D(Zf ) under the constraint S(Zf ) = 0

Important issue for connecting with optimization:
parameterized “costs” c (x) = c(x ,V ) for x = (x1, . . . , xn)
can be viewed as Y = c(X ,V ) with X = (X1, . . . ,Xn)
X = “randomized decision” tied to empirical sample at hand

regression can serve then to get a “formula” for c (x) ≈ f (x)
for using c̄(x) = R(c (x)), shouldn’t this be “tuned” to R?
c(X ,V ) may only be supported by some (X ,V ) database!



Example: an Application to Composition of Alloys

Alloy model: a mixture of various metals
amounts of chief ingredients: x = (x1, . . . , xn) “design”
amounts of other ingredients: v = (v1, . . . , vm) “contaminants”
a “characteristic” to be controlled: y ideally kept ≤ 0, say

due to uncertainty, a quantile constraint may be envisioned

Background information: y = c(x , v)? no available formula!

there is only a database in (x , v , y)-space,
{
(xk , vk , yk)

}N

k=1

view the database as an empirical distribution for random
variables X = (X1, . . . ,Xn), V = (V1, . . . ,Vm), Y

use regression of Y on X1, . . . ,XN to get a function y = c̄(x)

then impose the constraint c̄(x) ≤ 0 on the design x

shouldn’t the regression adapt then to the intended constraint?



Some References on Generalized Regression

[1] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2008),
“Risk Tuning in Generalized Linear Regression,”

Mathematics of Operations Research 33, 712–729.

[2] R. T. Rockafellar, J. O. Royset (2015),
“Measures of Residual Risk with Connections to Regression,
Risk Tracking, Surrogate Models and Ambiguity,”

SIAM Journal of Optimization 25, 1179–1208.



Finishing the Quadrangle Scheme

risk R ←→ D deviation

optimization ↑↓ S ↓↑ statistics

regret V ←→ E error

Error versus regret

The one-to-one correspondence

E(X ) = V(X )− EX , V(X ) = EX + E(X )

coordinates error and regret with the same “statistic”

S(X ) = argmin
C
E(X − C ) ←→ S(X ) = argmin

C

{
C + V(X − C )

}
Final links: nonunique but “natural” inversions D → E , R → V



The Mean-Based Quadrangle

articulated with a scaling parameter λ > 0

S(X ) = EX
= mean

E(X ) = λ(E [X 2])1/2

= L2-error, scaled

D(X ) = λσ(X )
= standard deviation, scaled

R(X ) = EX + λσ(X )
= safety margin risk

V(X ) = EX + λ(E [X 2])1/2

= L2-regret

properties: aversity with convexity, but NOT coherency



The Quantile-Based Quadrangle

at any probability level p ∈ (0, 1)

S(X ) = qp(X ) = VaRp(X )
= quantile

R(X ) = Qp(X ) = CVaRp(X )
= superquantile

D(X ) = Qp(X − EX ) = CVaRp(X − EX )
= superquantile deviation

E(X ) = E [ p
1−pX+ + X−]

= Koenker-Basset error, normalized

V(X ) = 1
1−pE [X+]

= expected absolute loss, scaled

properties: aversity with coherency



The Median-Based Quadrangle

the quantile case at probability level p = 1/2

S(X ) = VaR1/2(X ) = q1/2(X )
= median

R(X ) = CVaR1/2(X ) = Q1/2(X )
= “supermedian” (average in tail above median)

D(X ) = CVaR1/2(X − EX ) = Q1/2(X − EX )
= supermedian deviation

E(X ) = E |X |
= L1-error

V(X ) = 2E [X+]
= L1-regret

properties: aversity with coherency



The Max-Based Quadrangle

corresponding to the limit of the quantile case as p → 1

S(X ) = 1
2 [supX + inf X ]

= center of the (essential) range of X

R(X ) = supX
= top of the (essential) range of X

D(X ) = 1
2 [supX − inf X ]

= radius of the (essential) range of X

E(X ) = sup |X |
= L∞-error

V(X ) = sup[X − EX ]
= L∞-regret (max excess of “cost” over average)

properties: aversity with coherency



The Log-Exponential-Based Quadrangle

S(X ) = log E [ eX ]
= dual expression for Boltzmann-Shannon entropy

R(X ) = log E [ eX ]
= yes, the same as S(X )!

D(X ) = log E [ eX−EX ]
= log-exponential deviation

E(X ) = E [ε(X )] with ε(x) = ex − x − 1 > 0 when x ̸= 0
= exponential error

V(X ) = E [v(X )] with v(x) = ex − 1

{
> 0 when x > 0
< 0 when x < 0

= exponential regret

properties: aversity with coherency


